reduce the effect of Face Color while increasing the effect of Edge Color . Higher numbers reverse this. If your face and edge colors are the same, then there is no visible effect. Below we use a red Face Color and green Edge Color and increase the Fresnel Exponent from 0.1 to 1.5 and finally 5.0 with a small roughness.
Image Added
Image Added
Image Added
Refractive Index (Physical Mode)
This is a parameter meant to describe a physical refractive Index; the dielectric index of refraction for the material. Channel values for this parameter typically lie in the range 1 - 3. Since we support 3 color values to capture the spectral effect presets may be preferred over color pickers to avoid lots of tweaking.
Extinction Coefficient (Physical Mode)
Extinction Coefficient is a second refractive index for the material useful for characterizing metallic behaviors. Channel values for this parameter typically lie in the range 1 - 3. Since we support 3 color values to capture the spectral effect presets may be preferred over color pickers. When 0, the material reacts as a dielectric (glass, clearcoat). When non-zero, the material responds as a conductor would. Since this is based on physical values you should find the presets more helpful than manual tweaking of settings. Left to right are Copper, Gold, and Nickel.
Image Added
Image Added
Image Added
Layer Thickness (Physical Mode)
This control simulates a thick coating or glaze on the material. It can be textured to vary color as well. Below the shading ball has been given a bump on the Diffuse lobe only, making the effect of thickness more obvious for usage. The first two images are thickness 1 and 3 using the same Absorption Tint to show that thicker settings absorb more light physically. The last image is textured thickness using a checker pattern.
Image Added
Image Added
Image Added
Absorption Tint (Physical Mode)
This parameter controls the color of the resulting attenuation or coating, note that the thickness parameter above may change the look, where thicker settings are more saturated or absorb more light. Below are two solid colors and then a ramp, thickness remains constant at 1.0 The underlying diffuse lobe has a bump applied to it to help simulate the "thickness".
Image Added
Image Added
Image Added
Roughness
Specular roughness. A greater value produces rougher or "blurry" specular reflection. At 1.0 it resembles a diffuse surface and at 0.0 it's a perfectly clear reflection. Most objects will be realistic somewhere in between these values. Texturing this value may give you interesting effects like smudges, greasy fingerprints, and worn surfaces. Below are values 0.0, 0.5, and 1.0
Image Added
Image Added
Image Added
Anisotropy
Controls the shape of the specular highlights and reflections. 0 means isotropy which produces the regular circular specular highlight. Values from -1.0 to 1.0 produce the range of ellipses (stretching) from wide to tall.
By default, the direction of anisotropy is controlled by the model texture parameters. If the Shading Tangent is specified, it is used instead. You may even "overdrive" the parameter by going further than -1.0 and 1.0.
Image Added
Image Added
Image Added
Shading Tangent
Controls the anisotropy direction. Only valid when it is connected to a pattern. This is useful for making brushed metals.
Image Added
Image Added
Image Added
Bump
Normal to use for the clear coat illumination. If this is not set, it will use the global bump normal specified in the Properties near the bottom of the page. Setting this separately can produce a "glazed" effect where you have a bumpy clearcoat above a smooth surface.
Image Added
Image Added
Image Added
Double Sided
If on, illuminate on both sides of the surface for this clear coat lobe, that is, this will illuminate the surface whose normal is pointing away from the camera as well.