
Geometry

Viewport vs final render - Lightyear © Disney/Pixar

Choosing Primitives
Tessellation

Micropolygonlength
Choosing a micropolygonlength value

Examples

RenderMan supports a full range of geometric primitives, including , , , and . polygons NURBS , subdivision surfaces curves , volumes implicit surfaces Obj
is fully supported as well. ect instancing

Choosing Primitives

Polygons are simple and individually lightweight, but detailed models and curved surfaces may require many polygons for acceptable quality, quickly
becoming memory-intensive (even with RenderMan's very efficient implementation). However, their efficiency is hard to beat especially when rendering
collections of hard objects such as buildings or cities.

NURBS are true curved surfaces, are efficient, and yield very smooth results. However, they require a restrictive quadrilateral-only topology that may be
demanding to model.

https://rmanwiki.pixar.com/display/REN/Polygons
https://rmanwiki.pixar.com/display/REN/NURBS
https://rmanwiki.pixar.com/display/REN/Subdivision+Surfaces
https://rmanwiki.pixar.com/display/REN/Curves
https://rmanwiki.pixar.com/display/REN/Volumes
https://rmanwiki.pixar.com/display/REN/Implicit+Surfaces
https://rmanwiki.pixar.com/display/REN/Instancing
https://rmanwiki.pixar.com/display/REN/Instancing
https://rmanwiki.pixar.com/display/REN/Polygons
https://en.wikipedia.org/wiki/Non-uniform_rational_B-spline

Subdivision surfaces generally provide an easier way to produce smooth, curved surfaces with almost no modeling restrictions that are well suited for
animation purposes. Many polygon meshes can be converted arbitrarily to subdivision surfaces and will immediately gain the benefit of a smooth
appearance. However, note that subdivision surfaces inherently have a higher memory cost, and dense subdivision surfaces may be less efficient than the
equivalent polygon mesh if the geometry is highly over-detailed.

Curves are specialized primitive which excel at rendering long, thin geometry such as hair, fur, or blades of grass.

Implicit surfaces are another type of specialized primitive, most often used when dealing with fluid simulations generated by a third-party package. They
can also be used to render viscous fluids directly.

Volumes are used to render participating media with a heterogeneous density such as fog, smoke, or clouds.

Tessellation

In RenderMan, some primitives may get tessellated at run-time. This may happen for NURBS and subdivision surfaces (in order to provide a smooth
surface), or for primitives associated with a displacement shader (in order to provide a detailed mesh to displace).

Note that the (because shading happens at each ray hit). In particular, a coarse tessellation will not impact the frequency at which shading occurs
tessellation shouldn't affect any texture filtering, or yield blurred patterns.

However, (because displacement happens for each vertex of the tessellation will impact the frequency at which displacement is computed
tessellated mesh).

Micropolygonlength

Primitives are tessellated into . The degree of tessellation is driven by the .micropolygons dice micropolygonlength

Attribute "dice" "constant float micropolygonlength" [1]

This is the average that the tessellation will try to produce. micropolygon edge length The larger the value, the larger the micropolygons.

larger means tessellation, your object may show faceting or sharp edges but should have lower rendering costmicropolygonlength coarser
smaller means tessellation, your object should be smoother and better fit your ideal shape with a higher rendering costmicropolygonlength finer

By default, the micropolygonlength value is expressed in term of pixels on the screen (i.e. the length in pixels, of the micropolygon as projected on the
screen). This can be modified by using the attribute .dice strategy

Attribute "dice" "string strategy" ["planarprojection"]

This means that in order to get a similar tessellation level, using a value of X would translate in using a value of sqrt(X):shading rate micropolygonlength

shading rate = 0.25, micropolygonlength = 0.5
shading rate = 1, micropolygonlength = 1
shading rate = 4, micropolygonlength = 2

This is a useful conversion if you need to match previous tessellation.

Choosing a micropolygonlength value

Most of the time, a value of 1 (default) should work well. If your surfaces are smooth and non-displaced, you may be able to use larger micropolygonlength
values (2 or 4) before seeing any difference.

Occasionally, if the geometry is very detailed and/or displaced, you may need to use smaller values of . However, note that smaller micropolygonlength
micropolygons will result in larger memory consumption and slower render times.

You can find more about settings on geometry by looking at the or "PrimVars" offered by RenderMan. Prototype Attributes

Examples

RenderMan includes examples RIB files and shading plugins demonstrating its capabilities. These examples can be found in the PixarRenderMan-
 directory.Examples-XX.X/lib/scenes

The attribute is a successor to the (deprecated) . While shading rate was expressed in terms of , micropolygonlength shading rate area
micropolygonlength is (as the name indicates) a . length

https://rmanwiki.pixar.com/display/REN/Subdivision+Surfaces
https://rmanwiki.pixar.com/display/REN/Curves
https://rmanwiki.pixar.com/display/REN/Implicit+Surfaces
https://rmanwiki.pixar.com/display/REN/Volumes
https://rmanwiki.pixar.com/display/REN/Primitive+Variables

	Geometry

