
IceMan - Color Manipulation

ice.Image Cha(matrix)

Subject channels in the image to a linear transformation and translation. The matrix is specified as a two-dimensional array with corows and ci +
1 columns, where ci is the number of channels in the input, and co is the number of channels in the output. The last column specifies the amount of
translation.

Parameters

matrix

color space transformation matrix (list).

Example

In the example below, rgb is of type ice.Image.

matrix = [.3, .59, .11, 0]
luminance = rgb.cha(matrix, 1, 4)

ice.Image RGBToHSV()

Assuming that an image is in RGB space, convert it into HSV space. The alpha channel is just copied, if present.

ice.Image HSVToRGB()

Assuming that an image is in HSV space, convert it into RGB space. The alpha channel is copied, if present.

ice.Image Gamma(gamma)
Power law. The powers for each channel is specified as a tuple. If there are fewer power values than there are channels, the last value is propagated: if
there are too many, they are ignored.

Parameters

gamma

List of gamma values, one for each channel (list).

Example

orig = ice.Load('teapot.tif')
result = orig.Gamma([2.4])

ice.Image ExpLog(expLog)

Exponential/logarithmic color correction. These curves yield a more plausible channel-specific brightening/darkening effect. Values represent an amount:
negative values are interpreted as a "decrease" and positive ones as an "increase". Useful values are approximately in the 100 to 100 range.

The operation does not distinguish between color and alpha channels: nor does it account for premultiplied alpha.Gamma

Parameters

ExpLog

List of values, one for each channel. (list)

Example

orig = ice.Load('teapot.tif')
Boost red
result = orig.ExpLog([100, 50, 50])

ice.Image HueCopy(destination)

Return an image containing the hue information from the operand, and saturation and value information from the "destination" image.

Parameters

destination

Image that supplies the saturation and value (ice.Image).

Example

result = tinbox.HueCopy(teapot)

TableLookup(tables, minMax)

Map image through tables with interpolation if necessary. Tables can be specified either as images or as arrays:

Image: The first scanline is considered the table, and converted internally to floating point values.
Array: Has as many elements as there are channels: each element is an array of floating point values representing the lookup table for that
channel. As always, channels are propagated if necessary and extra channels are ignored.

The pair of values minMax are the minimum and maximum domain values for the tabulated range. The samples in the table are assumed to be equally
spaced in the interval (min,max).

Hint: The table version allows different table sizes for each channel: the image version does not.

Parameters

tables

Lookup tables (Image or 2D array)

minMax

Minimum and maximum component values. (RealPoint)

Example

i = ice.Load('test.tif')
perfom on just the red channel
red = i.Shuffle([0])
hist = red.Histogram(100, [0,1])
rhist = hist[0]
ogive = []
sum = 0
for e in rhist: sum = sum+e; ogive.append(sum)
total = ogive[-1]
ogive = [float(x)/total for x in ogive]
lut = [ogive]
range = [0, 1]
result = red.TableLookup(lut, range)

ice.Image Brighten(amount)

Another interface to . The specified is converted to a gamma value by applying the following equation:Gamma amount

gamma = (amount < 0.0) ? (1.0/(-amount + 1)) : amount + 1.0

The same gamma value is applied to all channels.

Parameters

Amount

How much to brighten (float)

Example

orig = ice.Load('teapot.tif')
result = orig.Brighten(0.8)

ice.Image OverExp(b, fraction)

Simulated photochemical overexposure. A fraction of the over-range values resulting from a normal addition is added back to all channels to achieve a
desaturating effect similar to that produced by overexposing film. The alpha channel is just copied from the first operand image.

Parameters

b

Second image (ice.Image).

fraction

Fraction controlling desaturation effect (float)

	IceMan - Color Manipulation

