
Light Path Expressions (LPEs)

Introduction
Initialization
State Transitions
Recording Results
Cleaning Up
Checking for LPE Existence

Introduction

Production renderers often output multiple display channels. For example, one output image of the renderer may contain all of the illumination that appears
in the final rendered image, while separate output images may consist of just the skin subsurface scattering illumination, direct specular illumination,
indirect diffuse illumination, the illumination from a particular group of lights, the illumination on a specific set of geometry, and so forth.

Light Path Expressions (LPEs) in RenderMan are used to specify what light transport paths to output to various display channel outputs. The Rix Light
Path Expression () interface allows a person writing a custom integrator to communicate information about light scattering events that is then used RixLPE
to route specific light transport paths to various output display channels, as indicated by the user-supplied Light Path Expressions.

An advantage of Light Path Expressions is that by allowing the user to write a short expression that describes the set of light transport paths that should be
included in a particular display channel output, there is no need to modify the shader or BxDF source code if the routing of light transport paths to output
display channels is later changed. Instead the system tracks the light scattering events along each light transport path internally, and is able to RixLPE
generate new output display channels for an arbitrary set of user-supplied Light Path Expressions.

The source code of the and integrators provides an example of how to use the interface, and the PxrDirectLighting PxrPathTracer RixLPE
documentation below shows the specific API calls one would make to add tracking of light scattering events to an integrator in order to support Light Path
Expression display channel outputs.

Initialization

In order to use the interface, first obtain a instance:RixLPE RixLPE

 RixLPE *rixLPE = integratorCtx->GetRixLPE();

Then allocate instances (typically one per light transport path):RixLPEState

 RixLPEState *states = rixLPE->AllocateStates(maxShadingCtxSize);

The method takes a parameter that indicates the number of instances to allocate. In the example here, "AllocateStates() RixLPEState maxShading
" is used (the maximum number of shading samples per shading context that will be passed into the integrator per batch), which means that we CtxSize

will be able to track scattering events separately for each shading sample in the shading context.

In general, a separate should be allocated for each light transport path that will be processed per batch of shading samples in the shading RixLPEState
context.

State Transitions

Next, we can track the light scattering events along each light transport path. At each scattering event along the light path, call and then MoveCamera() Mo
 on the instance corresponding to that light path in order to track relevant scattering events. For example:veVertex() RixLPEState

 states[sCtxIndex].MoveCamera(sCtx, sCtxIndex);
 states[sCtxIndex].MoveVertex(sCtx, sCtxIndex, scatterEvent1); // primary hit
 states[sCtxIndex].MoveVertex(sCtx, sCtxIndex, scatterEvent2); // secondary hit

In the calls to and above, the shading context sample is identified using the shading context index variable (" "MoveCamera() MoveVertex() sCtxIndex
). The instance (the " " variable in the example code above) provides the shading context to the API calls so that any needed RixShadingContext sCtx
context state is accessible. In this example, we have just one light transport path per sample in the shading context batch; a different indexing scheme into
the array of instances could be used if there were more than one light transport path per shading sample in the batch.RixLPEState

The call takes an additional parameter (the " " and " " variables above) that MoveVertex() RixLPEScatterEvent scatterEvent1 scatterEvent2
provides information about the type of light scattering event.

Recording Results

After the light scattering events have been recorded using and along the light transport path, use the MoveCamera() MoveVertex() RixLPE::
 class to aid with writing results to the LPE AOV display channels:SplatHelper

 RixLPE::SplatHelper aovs(...);
 aovs.SplatPerLobe(lobeWeights, weightIndex, thruput, isFinite, clamp, isHoldout);

Note that is a utility routine that performs the final direct lighting (or emissive object) light path transitions and will SplatHelper::SplatPerLobe()
accumulate the per-lobe contributions into the beauty and LPE AOVs. (See the implementation of in for details.)SplatPerLobe() RixLPEInline.h

The parameters to supply information about the per-lobe contributions (the " " argument in the example SplatHelper::SplatPerLobe() lobeWeights
above) and provide an index into the per-lobe contributions array (" "). The method also takes as input the path throughput (" "), weightIndex thruput
whether the contribution is finite (" "), a clamping factor (" "), and whether this is a holdout contribution (" "). If any of the isFinite clamp isHoldout
geometry along the light path is a holdout piece of geometry, then the contribution for that light path is a "holdout" contribution, and "true" should be passed
in for the " " parameter.isHoldout

Alternatively, some integrators may wish to manually perform the final state transitions that reach a light or emissive object, and then make separate per-
lobe invocations of the method to accumulate contributions for each lobe. E.g.,:SplatHelper::SplatValue()

 states[sCtxIndex].MoveVertex(sCtx, sCtxIndex, scatterEvent3);
 states[sCtxIndex].MoveLight(sCtx, sCtxIndex, ...);
 RixLPE::SplatHelper aovs(...);
 aovs.SplatValue(lobe1Contribution, ...);
 aovs.SplatValue(lobe2Contribution, ...);

For emissive objects, the method is used to record the illumination scattering event information:SplatHelper::SplatEmission()

 aovs.SplatEmission(emission, thruput, isFinite, clamp, isHoldout);

Similar to the method above, the method takes as input information about the SplatHelper::SplatPerLobe() SplatHelper::SplatEmission()
contribution for this light path (the " " argument), the path throughput (" "), whether the contribution is finite (" "), a clamping emission thruput isFinite
factor (" "), and whether this is a holdout contribution (" ").clamp isHoldout

Cleaning Up

When the integrator is finished with the instances, then use to free the memory of the instances:RixLPEState RixLPE::FreeStates() RixLPEState

 rixLPE->FreeStates(maxShadingCtxSize, states);

Checking for LPE Existence

It is possible to check for the existence of any user-supplied Light Path Expressions in the scene. If there are no Light Path Expressions in the scene,
integrators can avoid performing some work as an optimization.

Use the method to determine whether there are any light path expression (LPE) AOV display channels at all.RixLPE::AnyLPEs()

	Light Path Expressions (LPEs)

