
Writing Integrators

Introduction
Implementing the RixIntegrator Interface
Integration Context

Primary Rays
Ray Tracing

Integration
Direct Lighting

Generating light samples, evaluating bxdf response
Generating bxdf samples, evaluating light contribution

Writing To The Display
Random Number Generation
Indirect Rays

Generating Bxdf Samples
Creating Indirect Rays
Trace Indirect Rays

Light Transport
Ray Differentials & Ray Spreads

Camera Ray Spread
Reflected Ray Spread

Ray Property Queries

Introduction

This documentation is intended to instruct developers in the authoring of custom . Developers should also consult the headintegrators RixIntegrator.h
er file for complete details.

An integrator plugin is used to model the integration of camera rays. These plugins are responsible for taking primary camera rays as input from the
renderer and performing some work with these rays. Usually this work involves tracing the rays through the scene, computing the lighting on the hit points,
and sending integrated results to the display services.

Implementing the RixIntegrator Interface

RixIntegrator.h describes the interface that integrators must implement. is a subclass of , and therefore RixIntegrator RixShadingPlugin
shares the same , , and logic as other shading plugins. Integrators do not support lightweight instances, and initialization synchronization parameter table
therefore should not be overridden as any created instance data will not be ever returned to the . Therefore to CreateInstanceData() RixIntegrator
start developing your own integrator, you can and make sure your integrator class implements the required methods #include "RixIntegrator.h"
inherited from the interface: , , , and .RixShadingPlugin Init() Finalize() Synchronize() GetParamTable()

The macro defines the RIX_INTEGRATORCREATE() CreateRixIntegrator() method, which is called by the renderer to create an instance of the
integrator plugin. Generally, the implementation of this method should simply return a allocated copy of your integrator class. Similarly, the Rnew IX_INTE

 macro defines the method called by the renderer to delete an instance of the integrator plugin; a GRATORDESTROY() DestroyRixIntegrator()
typical implementation of this method is to the passed in integrator pointer:delete

 RIX_INTEGRATORCREATE
 {
 return new MyIntegrator();
 }
 RIX_INTEGRATORDESTROY
 {
 delete ((MyIntegrator*)integrator);
 }

Integration Context

To facilitate the job of an integrator plugin, the renderer provides an of type which contains information integration context RixIntegratorContext
about the primary rays, pointers to implementations of and , and routines to trace rays against the renderer's geometric display services lighting services
database.

Primary Rays

Information about the primary camera rays are supplied via the , , and fields of the . numRays numActiveRays primaryRays RixIntegratorContext

The member links a given shading point with it associated primary ray: the shading point with index RixShadingContext int* integratorCtxIndex i
 is associated with the ray .primaryRays[integratorCtxIndex[i]]

Ray Tracing

Ray tracing services are provided by the renderer via the and methods provided on the GetNearestHits() GetTransmission() RixIntegratorCon
.text

http://rmanwiki-test.pixar.com/display/REN22/RixShadingPlugin
http://rmanwiki-test.pixar.com/display/REN22/RixShadingPlugin#RixShadingPlugin-initialization
http://rmanwiki-test.pixar.com/display/REN22/RixShadingPlugin#RixShadingPlugin-synchronization
http://rmanwiki-test.pixar.com/display/REN22/RixShadingPlugin#RixShadingPlugin-getparamtable
https://rmanwiki.pixar.com/display/REN/RixShadingPlugin#RixShadingPlugin-initialization
https://rmanwiki.pixar.com/display/REN/RixShadingPlugin#RixShadingPlugin-initialization
https://rmanwiki.pixar.com/display/REN/RixShadingPlugin#RixShadingPlugin-synchronization
https://rmanwiki.pixar.com/display/REN/RixShadingPlugin#RixShadingPlugin-getparamtable
https://rmanwiki.pixar.com/display/REN/Display+Services
#

GetNearestHits() is invoked by an integrator to send rays against the geometric database and return the list of nearest ray hits. Two versions of this
routine are provided.

The first version returns its ray hits in the form of a list of . These shading contexts represent a collection of points which RixShadingContext
have had their associated fully executed and set up for sample evaluation and generation. Since a Bxdf evaluation may trigger an upstream Bxdfs
evaluation of all input , this call is considered to be very expensive as it invokes full shading. patterns
The second version of this call returns its ray hits in the form of a list of . No shading contexts are set up in this routine, and only RtHitGeometry
information about the geometric locale is returned. This version of the call is preferred if no shading needs to be performed, such as in the case of
an occlusion-only integrator.

All the shading contexts that are returned by must be explicitly released back to the renderer with the GetNearestHits() ReleaseShadingContexts()
 method. However:

shading contexts that are provided by the renderer to the integrator (through)RixIntegrator::Integrate()
shading contexts returned to the renderer (through RixIntegrator::IntegrateRays()

do not need to be released. The renderer will take care of this when appropriate.

Shading contexts associated with a bxdf closure can use a consequent amount of memory, so it is recommended to release them as soon as they are not
needed anymore. This is usually possible after the integrator is done evaluating or generating samples for these bxdfs.

GetTransmittance() can be invoked by an integrator to compute the transmittance between two points in space. This is of use for bidirectional path
tracing applications where the transmittance between vertex connections needs to be computed. It may also be used for computing shadow rays if the lighti

 cannot be used for this purpose for some reason.ng services

Both methods above need to be provided with an array of that have been properly initialized.RtRayGeometry

Integration

The method is the primary entry point for this class invoked by the renderer. The implementation of this routine is expected to fire the IntegrateRays()
list of active primary rays delivered via the parameter. This method has output parameters: the and RixIntegratorContext& ictx numShadingCtxs

 parameters are expected to be filled in with a list of primary shading contexts that are associated with the firing of the active primary rays. shadingCtxs
These primary shading contexts should not be released by the integrator.

The default implementation supplied for simply calls to trace the primary rays, and IntegrateRays() RixIntegratorContext::GetNearestHits
passes the associated shading context results to , which is the secondary entry point for this class. is never directly invoked Integrate() Integrate()
by the renderer; it is provided as an override convenience for implementors that are content with the default behavior of . Following a call IntegrateRays
to (or), integrators are expected to provide results to the renderer via the display services.IntegrateRays() Integrate()

The type of results depends on the integrator. Most integrators will at least trace camera rays and generate results that depend on the scene geometry, but
this is not mandatory. Non-physically-based integrators may generate results that do not depend on object materials or lights (e.g.), PxrVisualizer
while physically-based integrators will usually simulate light transport, taking into account materials and light properties.

A physically-based integrator is expected to compute the amount of light coming from the camera ray hit toward the camera ray origin. This usually
involves:

Tracing camera rays provided to (hits are returned as objects).IntegrateRays() RixShadingContext
Computing direct lighting (i.e. light coming directly from light sources), which involves:

Initializing lighting services for a given RixShadingContext
Generating light samples and evaluating the bxdf contribution for these
Generating bxdf samples and evaluating the light contribution for these

Computing indirect lighting (i.e. light coming from non-light sources part of the scene), which involves:
Generating bxdf samples and tracing indirect rays for each of these

Direct Lighting

Computing direct lighting for a given batch of points (encapsulated by a object) first requires initializing the lighting services.RixShadingContext

An implementation of may choose to ignore the camera rays supplied in the entirely, and shoot IntegrateRays() RixIntegratorContext
an entirely different set of rays. If it chooses to do so, it should be extremely careful about splatting with the display services, as those routines
are set up to be indexed by the field of the original primary rays.integratorCtxIndex

https://rmanwiki.pixar.com/display/REN/RixShadingContext
https://rmanwiki.pixar.com/display/REN/Writing+Bxdfs
https://rmanwiki.pixar.com/display/REN/Writing+Patterns
https://rmanwiki.pixar.com/display/REN/Writing+Lights
https://rmanwiki.pixar.com/display/REN/Writing+Lights
https://rmanwiki.pixar.com/display/REN/RtRayGeometry

RixLightingServices* lightingServices = integratorContext.GetLightingServices();
RixBXEvaluateDomain evalDomain = k_RixBXBoth;
RixLightingServices::Mode lsvcMode = RixLightingServices::k_IgnoreFixedSampleCount;
int fixedSampleCount = 0;
int indirectSamples = 1;
lightingServices->Begin(&shadingContext, &rixRNG, evalDomain,
 RixLightingServices::k_MaterialAndLightSamples,
 lsvcMode,
 RixLightingServices::SampleMode(), // defaults
 &fixedSampleCount,
 totalDepth,
 indirectSamples);

//
// computeDirectLighting(...)
//

lightingServices->End();

Once lighting services have been initialized, it is possible to ask for light sample generation and evaluation. Note that bxdf sample generation and
evaluation is available as soon as objects have been returned by .RixShadingContext GetNearestHits()

In a standard Multiple Importance Sampling computation, we need to

generate bxdf samples and evaluate light contribution for each of them
generate light samples and evaluate bxdf response for each of them

Note that because the bxdf API returns multiple-lobe results, we need to setup objects beforehand (instead of dealing with a simple RixBXLobeWeights R
 per sample). This requires setting up buffers of appropriate size.tColorRGB RtColorRGB

Generating light samples, evaluating bxdf response

// numLightSamples is the number of light samples generated for *each* shading point.
// Currently, this value is used for all points in the current shading context.

// RixLightingServices::GenerateLightSamples() fills array parameters with the first
// sample for all shading points first, then the second sample, and so on...

// m_ClDiffuse, m_ClSpecular, m_ClUser are arrays of RtColorRGB buffers. Each buffer is of size
// numLightSamples * numPoints. They will store the generated light samples.

RixBXLobeWeights lightContributions(
 numLightSamples * numPoints,
 m_numPotentialDiffuseLobes,
 m_numPotentialSpecularLobes,
 m_numPotentialUserLobes,
 m_ClDiffuse,
 m_ClSpecular,
 m_ClUser);

// m_diffuse, m_specular, m_user are arrays of RtColorRGB buffers. Each buffer is of size
// numLightSamples * numPoints. They will store the bxdf contribution for each light sample.

RixBXLobeWeights evaluatedMaterialContributions(
 numLightSamples * numPoints,
 m_numPotentialDiffuseLobes,
 m_numPotentialSpecularLobes,
 m_numPotentialUserLobes,
 m_diffuse,
 m_specular,
 m_user);

// For additional description of the call parameters, see RixLightingServices API.
lightingSvc->GenerateSamples(
 numLightSamples, &rixRNG, lightGroupIds, lightLpeTokens, directions, lightNormals, distance,
 &lightContributions, transmission, nullptr, lightPdf,
 lobesWanted, &evaluatedMaterialContributions, evaluatedMaterialFPdf, evaluatedMaterialRPdf,
 lobesEvaluated, nullptr, throughput);

// We don't need to make an explicit call to the bxdf's EvaluateSamples(), because the lighting
// services have done it for us, since we provided them with 'evaluatedMaterialContributions'.

Generating bxdf samples, evaluating light contribution

// numBxdfSamples is the number of bxdf samples generated for *each* shading point.
// Currently, this value is used for all points in the current shading context.

RixBXLobeWeights bxdfContributions(

 numBxdfSamples* numPoints,
 m_numPotentialDiffuseLobes,
 m_numPotentialSpecularLobes,
 m_numPotentialUserLobes,
 m_diffuse,
 m_specular,
 m_user);

// The RixBxdf GenerateSample API is single-sample (per shading point), so when dealing with
// multiple bxdf samples, we need to wrap it inside a loop.
for (int bs = 0; bs < numBxdfSamples; bs++) {
 int offset = bs * numPoints;

 // Changing the offset of the lobe weights will write into the lobe weights at the appropriate
 // offset for this set of bxdf samples.
 bxdfContribution.SetOffset(offset);

 bxdf.GenerateSample(k_RixBXDirectLighting, lobesWanted, &rixRNG,
 lobeSampled + offset, directions + offset,
 bxdfContributions, materialFPdf + offset,
 materialRPdf + offset, nullptr);

 for (int i = 0; i < numPoints; i++) distances[offset + i] = 1e20f;

 incRNG(shadingContext);
}

// Reset the offset of the lobe weights back to zero for the code below.
bxdfContributions.SetOffset(0);

RixBXLobeWeights lightContributions(
 numBxdfSamples * numPoints,
 m_numPotentialDiffuseLobes,
 m_numPotentialSpecularLobes,
 m_numPotentialUserLobes,
 m_ClDiffuse,
 m_ClSpecular,
 m_ClUser);

lightingSvc->EvaluateSamples(
 // inputs
 numBxdfSamples, &rixRNG, directions, distances, materialFPdf, &bxdfContributions, lobeSampled,
 // outputs
 lightGroupIds, lightLpeTokens, &lightContributions, transmission, nullptr, lightPdf,
 nullptr, nullptr, throughput);

Writing To The Display

Once the final contribution for a given shading point has been computed, the API can be used to splat this contribution to the RixDisplayServices
appropriate pixel. The integrators do not have direct access to the pixels, instead they have to provide the display services with the appropriate integrator
context index (which can be found in).RixShadingContext::integratorCtxIndex

https://rmanwiki.pixar.com/display/REN/Display+Services

// Writing to display services. 'ciChannelId' is the id associated with the 'Ci' channel.
RixDisplayServices* displayServices = integratorContext.GetDisplayServices();

// These point to the final contribution and alpha values we want to splat to the pixels.
RtColorRGB* finalContributions = ...; // of size shadingContext->numPts
RtColorRGB* finalAlpha = ...; // of size shadingContext->numPts

for (int i = 0; i < shadingContext.numPts; i++)
{
 displaySvc->Splat(ciChannelId, shadingContext.integratorCtxIndex[i], finalContributions[i]);
 displaySvc->WriteOpacity(ciChannelId, shadingContext.integratorCtxIndex[i], finalAlpha[i]);
}

Random Number Generation

You can find more about using RixRNG This document will help you understand how to improve sampling strategies.here.

Indirect Rays

In addition to compute direct lighting (as described above), physically-based integrators also need to deal with indirect lighting. This is done by casting
secondary rays from the camera hits, and performing a full lighting computing on the secondary hit points. Since this involves both computing direct and
indirect lighting, this is a recursive process.

The integrator is responsible for creating secondary rays (usually using the bxdf to do so), and trace them by calling RixIntegrator::
. The integrator will then use the returned objects to compute direct and indirect lighting, similarly to what was GetNearestHits() RixShadingContext

done in .RixIntegrator::Integrate()

In order to get the directions and weights of the indirect rays, integrators should use the bxdf method. Tracing indirect rays can be GenerateSamples()
split into 3 steps.

Generating Bxdf Samples

RixBXLobeWeights lw(
 numIndirectSamples * numPoints,
 m_numPotentialDiffuseLobes,
 m_numPotentialSpecularLobes,
 m_numPotentialUserLobes,
 m_diffuse,
 m_specular,
 m_user);

// Generate the indirect ray directions based on the bxdf.
for (int bs = 0; bs < numIndirectSamples; bs++)
{
 int offset = bs * numPoints;

 // Changing the offset of the lobe weights will write into the lobe weights at the appropriate
 // offset for this set of bxdf samples.
 lw.SetOffset(offset);

 bxdf.GenerateSample(
 k_RixBXIndirectLighting,
 m_lobesWanted,
 &rng,
 m_lobeSampled + offset,
 m_directions + offset,
 lw,
 m_FPdf + offset,
 m_RPdf + offset,
 nullptr);

 for (int i = 0; i < npoints; i++) m_distances[offset + i] = 1e20;
}

// Resets the offset of the lobe weights back to zero for the code below.
lw.SetOffset(0);

https://rmanwiki.pixar.com/display/REN/Generating+well-stratified+samples+using+RixRNG

Creating Indirect Rays

// Initializes rays to be traced. We may not have to trace as many rays as bxdf samples were
// generated, since some of the bxdf weights may be zero, or we may use russian roulette, so we keep
// a count of the rays to process.
int currentRay = 0;
for (int bs = 0; bs < numIndirectSamples; bs++)
{
 for (int i = 0; i < numPoints; i++)
 {
 int sampleIndex = bs * numPoints + i;

 int rayId = sCtx.rayId[i];

 RtRayGeometry& ray = m_rays[currentRay];
 ray.origin = bias(P[i], Ngn[i], m_directions[sampleIndex], biasValue);
 ray.maxDist = m_distances[sampleIndex];

 ray.rayId = currentRay;
 ray.originRadius = iradius[i];
 ray.lobeSampled = lobeSampled;
 ray.wavelength = wavelength ? RtRayGeometry::EncodeWavelength(wavelength[i]) : 0;
 // Compute ray spread for the lobe
 ray.SetRaySpread(lobeSampled, iradius[i], ispread[i], curvature[i], m_FPdf[sampleIndex]);
 ray.InitOrigination(&sCtx, Ngn, i);

 currentRay++;
 }
}
int numRays = currentRay;

Trace Indirect Rays

// Let's trace the rays
int* numShadingCtxs;
RixShadingContext const** shadingCtxs;

iCtx.GetNearestHits(numRays, m_rays, lobesWanted, false, numShadingCtxs, shadingCtxs);

Light Transport

The final pseudo-code for computing light transport is the following:

RixIntegrator::Integrate(numSCtxs, sCtxs)
 ComputeLightTransport(numSCtxs, sCtxs)
 Splat results to display services

ComputeLightTransport(numSCtxs, sCtxs)
 For each shading context sCtx:
 ComputeDirectLighting(sCtx)
 ComputeIndirectLighting(sCtx)

ComputeDirectLighting(sCtx)
 InitializeLightingServices()
 GenerateLightSamples()
 EvaluateBxdfSamples()
 Compute MIS weights
 GenerateBxdfSamples()
 EvaluateLightSamples()
 Compute MIS weights

ComputeIndirectLighting(sCtx)
 iRays = CreateIndirectRays(sCtx)
 (numSCtxs, sCtxs) = TraceIndirectRays(iRays)
 ComputeLightTransport(numSCtxs, sCtxs)

1.

2.

Ray Differentials & Ray Spreads

Ray differentials determine texture filter sizes and hence texture mipmap levels (and texture cache pressure in scenes with many textures).

In RIS the goal for ray differential computation was improved efficiency (over REYES), even if it's not going to give quite as accurate ray differentials in all
cases. Auxiliary ray-hit shading points are no longer created, and we only compute an isotropic ray "spread" - not a full anisotropic set of ray differentials.
The ray spread expresses how much the ray gets wider for every unit of distance it travels.

Camera Ray Spread

By default, the spread of camera rays is set up such that the of a camera ray is 1/4 pixel. The of the camera ray is two times its radius, ie. 1/2 radius width
pixel. Footprints are constructed at ray hit points such that a camera ray hit footprint is 1/2 pixel wide. Equivalently, the of a camera ray footprint is 1/4 area
pixel. (This is true independent of image resolution and perspective/orthographic projection.)

This choice of default camera ray spread has both a theoretical and a practical foundation. footprints that are 1/2 pixel wide match the Nyquist Theory:
sampling limit. our experiments indicate that footprints smaller than 1/2 pixel wide do not sharpen the final image, but footprints wider than that do Practice:
soften the final image. Moving to smaller than 1/2 pixel width is all pain (finer mipmap levels, more texture cache pressure), no gain (no image quality
improvement). Moving to wider than 1/2 pixel is more subjective: some people prefer the sharp look, some prefer the softer look.

Reflected Ray Spread

For reflection we compute the reflected ray spread using two approaches:

Ray spread based on surface curvature. The ray spread for reflection from a curved smooth surface is simple to compute accurately using Igehy's
:differentiation formula

spread' = spread + 2*curvature*PRadius

Ray spread based on roughness (pdf). The ray spread from a flat rough surface depends on roughness: the higher the roughness the lower the
pdf in a given direction; here we map the pdf to a ray spread using a heuristic mapping:

spread' = c * 1/sqrt(pdf) -- with c = 1/8

We set the overall ray spread to the max of these two.

This ray spread computation is done in the SetRaySpread() function (see RixIntegrator.h), which is called from the various RIS integrators. Integrator
writers can easily make their own version of SetRaySpread() using other techniques and heuristics and call that from their integrators.

Ray Property Queries

Implementors of or other shading plugins may want to query ray properties such as the ray depth or eye throughput, in order to allow for artistic RixBxdf
control or optimization. For instance, as an optimization a may want to skip the evaluation of a particularly expensive lobe, if the current ray RixBxdf
depth of the hit point is beyond some arbitrary threshold.

Since it is the integrator that is best suited for tracking such ray properties, we require that user-authored integrators that would like to participate in such
ray property queries to override the routine and provide the necessary information as requested by a or other shading GetProperty() RixBxdf
plugin. Integrators that do not implement ray property queries should return from , and the caller that is attempting to ask the false GetProperty()
integrator for the property must recover gracefully by not implementing the optimization.

The definition of is in , and matches the call from ; in fact, the enum RayProperty RixShading.h GetProperty() RixShadingContext
implementation of simply turns around and calls . Implementors should RixShadingContext::GetProperty() RixIntegrator::GetProperty()
expect that some rays may be invalid, as signalled by a value less than zero. It is the caller's responsibility to allocate the correct amount of storage rayId
(i.e. the implementor of the callback in does not need to allocate the memory). The expected output return values in for each RixIntegrator result
value of are as follows:RayProperty

: is expected to be an , and should be filled in with the current depth of the ray with matching associated with k_RayDepth result int * rayId
the current invocation. The implementor must check for < 0 and return a -1 depth if such a ray ID is encountered.IntegrateRays rayId

: is expected to be , and should be filled in with a copy of the appropriate k_RayRngSampleCtx result RixRNG::SampleCtx* RixRNG::
 that ensures decent stratification results for the ray with matching .SampleCtx rayId

k_RayThruput: is expected to be RtColorRGB , and should be filled in with the current thruput to the eye of the ray with matching result * ray
 associated with the current invocation.Id IntegrateRays

k_RayVolumeScatterCount: result is expected to be an int *, and should be filled in with the number of times a volume direct light scattering
event has occurred during the current invocation for the given ray with matching .IntegrateRays rayId
k_RayVolumeSampleCount: result is expected to be an int *, and should be filled in with the number of times a volume sample was taken
during the current invocation for the given ray with matching .IntegrateRays rayId

https://graphics.stanford.edu/papers/trd/
https://graphics.stanford.edu/papers/trd/
https://rmanwiki.pixar.com/display/REN/Writing+Bxdfs
https://rmanwiki.pixar.com/display/REN/RixShadingContext#RixShadingContext-RayProperty

	Writing Integrators

