Writing Lights

® Introduction
® RixLightFactory
® RixLight
© Light selection methods
O RixLight::GetIincidentRadianceEstimate()
O RixLight::GetIincidentRadianceEstimate()
© RixLight::GetPowerEstimate()
© RixLight::GenerateSamples()
O RixLight::EvaluateSamples()
O RixLight::GenerateEmission()
© RixLight::EvaluateEmissionForCamera()
o RixLight:Edit()

Introduction

This documentation is intended to instruct developers in the authoring of custom lights. Developers should also consult the Ri xLi ght . h header file for
complete details.

The Ri xLi ght Fact ory interface is a subclass of Ri xShadi ngPl ugi n, and defines a shading plugin responsible for creating a Ri xLi ght object.

The Ri xLi ght interface characterizes the light emitting from an analytic light source - a light source that can be described programmatically or by a
formula.

RixLightFactory

RixLightFactory is a subclass of Ri xShadi ngPl ugi n, and therefore shares the same initialization, synchronization, and parameter table logic as other
shading plugins. Therefore to start developing your own Light, you can #i ncl ude "Ri xLi ght. h" and make sure your light factory class implements the
required methods inherited from the RixShadingPlugin interface: I ni t (), Fi nal i ze(), Synchroni ze(), Get Par anTabl e(), and Cr eat el nst anceD
at a(). Generally, there is one shading plugin instance of a Ri xLi ght Fact ory per bound Ri Li ght (RIB) request. This instance may be active in
multiple threads simultaneously.

The RIX_LIGHTFACTORYCREATE() macro defines the CreateRixLightFactory() function, which is called by the renderer to create an instance of the light
factory plugin. Generally, the implementation of this method should simply return a new allocated copy of your light factory class. Similarly, the
RIX_LIGHTFACTORYDESTROY() macro defines the DestroyRixLightFactory() function called by the renderer to delete an instance of the light factory
plugin; a typical implementation of this method is to delete the passed in light factory pointer:

RI X_LI GHTFACTORYCREATE

{
return new MyLi ght Factory();
}
RI X_LI GHTFACTORYDESTROY
{
del ete ((MLight Factory*)factory);
}

RixLight

Ri xLi ght is the abstract base class from which you can derive your own light implementations. To illustrate the API, we have provided
PxrSimpleRectLight.cpp, which implements a simple non-textured single-sided light of rectangular shape. Note that the PxrRectLight that ships with
RenderMan offers more features than illustrated here, and uses more sophisticated sampling strategies. It also supports bidrectional sampling and photon
emission, which the example does not.

The light's constructor is called by the corresponding Pxr Si npl eRect Li ght Factory.


https://rmanwiki.pixar.com/display/REN/RixShadingPlugin
https://rmanwiki.pixar.com/display/REN/RixShadingPlugin
https://rmanwiki.pixar.com/display/REN/RixShadingPlugin
https://rmanwiki.pixar.com/display/REN/RixShadingPlugin
https://rmanwiki.pixar.com/display/REN/RixShadingPlugin#RixShadingPlugin-initialization
https://rmanwiki.pixar.com/display/REN/RixShadingPlugin#RixShadingPlugin-initialization
https://rmanwiki.pixar.com/display/REN/RixShadingPlugin#RixShadingPlugin-synchronization
https://rmanwiki.pixar.com/display/REN/RixShadingPlugin#RixShadingPlugin-getparamtable
http://rmanwiki-test.pixar.com/display/REN22/RixShadingPlugin#RixShadingPlugin-lightweightinstance
http://rmanwiki-test.pixar.com/display/REN22/RixShadingPlugin#RixShadingPlugin-lightweightinstance

We have two methods used to communicate geometric properties to the ray tracer. Get Bounds() returns a sequence of points describing the bounding
shape of the light. The bounds should be expressed in the local space of the light. For our rect light example, there are four points in the range +/- 0.5 in x
and y. The rect light lies on the z=0 plane. Intersect, the second method, will compute an intersection between the light and an incoming ray. The
intersection is computed in the local space of the light. A consequence of this is that the ray direction will not be normalized if the light's transform contains
a scale. It's important, therefore, not to make use of any optimisations in your intersection function that does assume a unit length direction.

Light selection methods

There are three methods that act as helpers for the renderer's light selection scheme. Light selection is a stochastic process whereby, according to
integrator settings, one or more lights are assigned to a shade point in a rendering iteration. The lights that are selected have samples generated for them

(see below). The purpose of selection is to attempt to choose the lights liable to contribute most to the shade point in question, thereby keeping variance
low.

RixLight::GetIncidentRadianceEstimate()

virtual RtFloat GetlncidentRadi anceEsti mate(
Rt Poi nt 3 const & P,
Rt Matri x4x4 const & |ight ToCurrent,
Rt Matri x4x4 const & current ToLi ght) const = 0;

To help with this calculation, the renderer will call Get | nci dent Radi anceEst i mat e() on the light, providing both the position of the shade point (in
‘current’ space) and a pair of transforms. In our RectLight example, we check to see if the shade point lies to the front of the light. If it does, we multiply its
intensity by its area (which may be non-unity in the event of a scale transform) and the cosine of the angle between its normal and the vector between
shade point and light center. We then divide by the squared distance to the light center and return the result.

RixLight::GetIncidentRadianceEstimate()

virtual RtFloat GetlncidentRadi anceEsti mate(
Rt Poi nt 3 const& segnment Ori gi n,
Rt Vect or 3 const & segnentDir,
Rt Fl oat segnent Len,
Rt Matri x4x4 const & | i ght ToCurrent,
Rt Mat ri x4x4 const & current TolLi ght,
Rt Fl oat & m nT,
Rt Fl oat & maxT) const = 0;

A second overload of Get | nci dent Radi anceEst i mat e() is used to compute estimates for ray segments rather than individual points. This is used
exclusively for equiangular sampling of volumes. In our example, we find the nearest point on the incoming line segment to the light and then treat that just
as the shade point in the simpler case. Note that this overload has minT and maxT as return values. These can be used to ‘clip’ the line segment, providing
a subset over which the light provides non-zero illumination. For example, since the rect light is single-sided, we could clip the segment against the light's
plane. Similarly, if the light was a spot light, we could clip the segment against the cone's frustum.

RixLight::GetPowerEstimate()

virtual float GetPowerEstimte(Rt Matrix4x4 const& xform) const = 0;

Get Power Esti mat e() should return the light's intensity by its area. This is a crude estimate given independent of any shade point.

RixLight::GenerateSamples()



struct GCenerateSanpl esResults
{
public:
int& patchlndex; // only set by mesh lights
Rt Fl oat 3& UVW
Rt Vect or 3& direction;
float & di stance;
float& pdf Direct;
bool const isBidirectional;
float& pdfEmit;
float& pdf EmitDirection;
fl oat & sol i dAngl eToAr ea;
Rt Col or R&B di f fuseCol or;
Rt Col or RGB specul ar Col or;
Rt Nor mal 3& nor nal ;
I
virtual void GenerateSanpl es(
Ri xLi ght Cont ext const& | Ct x,
Ri xScatterPoi nt const& scatter,
Gener at eSanpl esResul t s& results) const = 0;

Gener at eSanpl es() is the function used to create a sample on the light and put it in the Gener at eSanpl esResul t structure, defined in RixLight.h. UW
indicates the position of the sample in the light's parametric space; direction is the normalized vector from the shade point to the light sample position in
‘current' space; distance is the distance between the two points; and pdf is the pdf of the chosen point in solid angle measure. In the example case, we
have a uniform probability of sampling across the light's surface, so the area pdf is 1/area. This is then converted to solid angle measure by multiplying by
the cosine of the angle between light and outgoing direction, and dividing by the squared distance. The light returns both radiance in both di f f useCol or
and specul ar Col or . These will be interpreted separately by a bxdf's diffuse and specular lobes, and allows for a light to contribute different radiances for
each. The light should also return the local-space normal at the sampled point on the light. (The normal is constant in the example rect light.) Note that the
input Ri xLi ght Cont ext grants the function access to the sample's time in normalized shutter time (ie 0 at shutter open and 1 at shutter close); a function
Get Li ght ToCur rent Tr ansf or n(') will return a matrix at the appropriate time, and gives access to a random-number pair in a well-stratified sequence.
A flag on the Gener at eSanpl esResul t indicates whether the light is being used in a bidirectional setting. If so, it expected to provide three further return
values (not covered by the example). sol i dAngl eToAr ea is a conversion factor to convert between the two pdf measures. For a rect light, this would be
the cosine of the angle between light normal and the direction vector divided by the squared distance. pdf Emi t is the probability of emitting a photon from
the selected sample position on the light, again expressed in a solid angle measure. (For a rect light with a uniform sampling scheme, pdf Em t would be 1
/area.) pdf Emi t Di r ect i on is the probability of emitting a photon in the selected direction given the selected sample position. (For a rect light with cosine
emission distribution, this would be cos(theta) / PI.)

RixLight::EvaluateSamples()

struct Eval uat eSanpl esResul ts

{
float& pdf Direct;
bool const isBidirectional;
float& pdfEmit;
float& pdf EmitDirection;
fl oat & sol i dAngl eToAr ea;
Rt Col or RGB di f f useCol or;
Rt Col or RGB specul ar Col or;
Rt Nor mal 3& nor nal ;
}

virtual void Eval uateSanpl es(
Ri xLi ght Cont ext const& | Ctx,
Ri xSanpl ePoi nt const & sanpl e,
Ri xScatterPoint const& scatter,
Eval uat eSanpl esResul t s& results) const = O;

Eval uat eSanpl es() is called so that the light can compute intensity and angular-measure pdf for an incoming ray direction (typically generated by
sampling a Bxdf). Eval uat eSanpl es() will only be called for a ray if a previous Intersect call returned true for the same ray. Results are returned in the E
val uat eSanpl esResul t structure, definied in RixLight.h. 'pdf Di r ect ' is the solid-angle-measure pdf for the ray; di f f useCol or and specul ar Col or
are the light's contribution for diffuse and specular lobes respectively, and 'normal’ is the light's surface normal at the point of intersection. The bidirectional
result quantities are the same as described above for Gener at eSanpl es() .

RixLight::GenerateEmission()



struct Generat eEm ssionResults
{
int& patchlndex; // only set by nesh |lights
Rt Fl oat 3& UVW
Rt Poi nt 3& position;
Rt Nor mal 3& nor mal ;
Rt Vect or 3& direction;
float & di stance;
float& pdf Enit; // area neasure
float& pdf EmitDirection;
s
virtual void CenerateEn ssion(
Ri xLi ght Cont ext const& | Ct x,
Gener at eEm ssi onResul t s& results) const = 0;

Gener at eEm ssi on() is the function used to create photons from the light, used in a bidirectional pathtracing context. Note that it requires four random
numbers: two for picking a point on the surface (with uniform probability in our example) and two for picking a direction (with a cosine distribution). Note
that in this special case, since we don't at this stage in the process of a shade point, the pdfs are not in the solid angle measure. We return pdf Emi t and p
df Emi t Di recti on (see above) and the renderer will employ a solid-angle-measure conversion once the emitted photon has struck a surface internally.

RixLight::EvaluateEmissionForCamera()

struct Eval uat eEm ssi onFor Caner aResul t s

{
Rt Col or RGB caner aCol or;
i
virtual void Eval uat eEm ssi onFor Caner a(
Ri xLi ght Cont ext const& | Ctx,
Ri xSanpl ePoi nt const & sanpl e,
Ri xScatterPoint const& scatter,
Eval uat eEm ssi onFor Caner aResul t s& results) const = 0;

Eval uat eEm ssi onFor Carer a() will be called if a light is marked as camera-visible and is intersected by a camera ray. Its result is returned in the Eva
| uat eEmi ssi onFor Caner aResul t s structure, which contains the single color field canmer aCol or .

RixLight::Edit()

virtual RixLight* Edit(
Ri xCont ext & ct X,
Rt UString const nane,
Ri xPar anet er Li st const* pLi st,
Rt Poi nter instanceData) = 0;

Edi t () is the function that will be called after any changes are made to the light properties. It is expected to update the class members for any
subsequent sampling. Note that in more sophisticated lighting examples, this could involve such things as computing a new CDF table for a textured light.



	Writing Lights

