Writing Patterns

Out-of-the-box C++ Patterns Deprecated

XPU only supports OSL patterns. If you plan on writing any patterns for RenderMan, we recommend that you write them in OSL so that they will work in
both XPU and RIS.

Furthermore, we have deprecated all of the C++ patterns that we ship with RenderMan in favor of a set of OSL patterns with the same name and
functionality. These patterns allow for new and existing pattern networks to work in the same way in both RIS and XPU.

See OSL Patterns for the details on writing OSL patterns for RenderMan XPU and RIS.

If you choose to write a C++ pattern using the RixPattern interface, it will work in RIS only. Writing C++ patterns is only supported for RIS.

Introduction to C++ Patterns

This documentation is intended to instruct developers in the authoring of custom patterns. Developers should also consult the Ri xPat t er n. h header file
for complete details.

A Ri xPat t er n plugin is used to connect textures and procedurally generated patterns to Ri Bxdf parameters, or to other patterns to create a shading
graph. There are numerous pattern plugins included with the RenderMan software, but if none of the included plugins generate the pattern you want, then
this guide will help you write your own pattern plugin. Source code for many of the RenderMan pattern plugins can be found in the Pi xar Render Man-
Exanpl es- VERSI OV pl ugi ns/ pat t er n/ directory which is installed as part of the separate examples package.

For pattern generation using the Open Shading Language (OSL), see the PxrOSL plugin documentation on Working with PxrOSL.

Implementing the RixPattern Interface

Ri xPat t er n. h defines the interface that all pattern plugins must implement. Ri xPat t er n is a subclass of Ri xShadi ngPl ugi n, and therefore shares
the same initialization, synchronization, and parameter table logic as other shading plugins. Because a Ri xPatt er n is expected to be a lightweight
object that may be created many times over the course of the render, Ri xPatt er n is expected to take advantage of the lightweight instancing services p
rovided by Ri xShadi ngPl ugi n . Therefore to start developing your own pattern, you can #i ncl ude "Ri xPatt ern. h" and make sure your pattern
class implements the required methods inherited from the Ri xShadi ngPl ugi n interface: | ni t (), Fi nal i ze(), Synchroni ze(), Get Par anTabl e(),
and Cr eat el nst anceDat a() .

The Rl X_PATTERNCREATE() macro defines the Cr eat eRi xPat t er n() method, which is called by the renderer to create an instance of the pattern
plugin. Generally, the implementation of this method should simply return a new allocated copy of your pattern class. Similarly, the RI X_PATTERNDESTROY
() macro defines the Dest r oyRi xPat t ern() method called by the renderer to delete an instance of the pattern plugin; a typical implementation of this
method is to del et e the passed in pattern pointer:

Rl X_PATTERNCREATE
{

}
RI X_PATTERNDESTROY

return new MyPattern();

delete ((My/Pattern*)pattern);

Computing Pattern Output

Conput eCut put Par ans() is the heart of a pattern plugin: it evaluates the input parameters, and computes the pattern output. It is called once per

graph execution, and all outputs must be computed during this single invocation. The number and type of outputs should match the number and type of
outputs declared in the parameter table. The domain of evaluation of this function is a shading context, which is of type Ri xShadi ngCont ext , defined in R
i xShadi ng. h.

To read an input value, use the Ri xShadi ngCont ext : : Eval Par an() method. The desired input parameter to the pattern is selected by an integer par a
ml d, which is the ordinal position of the parameter in the parameter table. Patterns are expected to know the par aml d, the type of the associated
parameter, and are expected to pass a pointer to a pointer of the appropriate type. As such, it is suggested that a private parameter enumeration is used to
keep track of the order that the parameters are created in the parameter table. For more information, please consult the documentation for Ri xShadi ngCo
nt ext : : Eval Par an() and Ri xShadi ngPl ugi n: : Get Par anirabl e() .

After reading input values, output values need to be set up. First, memory buffers for the requested outputs should be allocated using the Ri xShadi ngCon
t ext memory allocation services. These buffers should then be bound to the requested Qut put Spec out put s parameter passed to Conput eQut put Pa
rans(), and the type and detail information about those outputs filled in as well. This information should match the declarations from the parameter table.
The following code is boilerplate that can be used: it reads the plugin's parameter table, loops through and allocates the appropriate buffers, and sets the
detail and type assuming that the output is always a varying color or float (typical of most patterns).

https://rmanwiki.pixar.com/pages/viewpage.action?pageId=11468953
https://renderman.pixar.com/resources/RenderMan_20/risProcedures.html#ribxdf
https://renderman.pixar.com/resources/RenderMan_20/risPatterns.html
https://renderman.pixar.com/resources/RenderMan_20/PxrOSLRef.html
https://rmanwiki.pixar.com/display/REN/RixShadingPlugin
https://rmanwiki.pixar.com/display/REN/RixShadingPlugin#RixShadingPlugin-initialization
https://rmanwiki.pixar.com/display/REN/RixShadingPlugin#RixShadingPlugin-synchronization
https://rmanwiki.pixar.com/display/REN/RixShadingPlugin#RixShadingPlugin-getparamtable
http://rmanwiki-test.pixar.com/display/REN22/RixShadingPlugin#RixShadingPlugin-lightweightinstance
https://rmanwiki.pixar.com/display/REN/RixShadingPlugin#RixShadingPlugin-initialization
https://rmanwiki.pixar.com/display/REN/RixShadingPlugin#RixShadingPlugin-initialization
https://rmanwiki.pixar.com/display/REN/RixShadingPlugin#RixShadingPlugin-synchronization
https://rmanwiki.pixar.com/display/REN/RixShadingPlugin#RixShadingPlugin-getparamtable
http://rmanwiki-test.pixar.com/display/REN22/RixShadingPlugin#RixShadingPlugin-lightweightinstance
https://rmanwiki.pixar.com/display/REN/RixShadingPlugin#RixShadingPlugin-getparamtable
https://rmanwiki.pixar.com/display/REN/RixShadingContext#RixShadingContext-evalparam
https://rmanwiki.pixar.com/display/REN/RixShadingContext#RixShadingContext-evalparam
https://rmanwiki.pixar.com/display/REN/RixShadingContext#RixShadingContext-evalparam
https://rmanwiki.pixar.com/display/REN/RixShadingContext#RixShadingContext-evalparam
https://rmanwiki.pixar.com/display/REN/RixShadingPlugin#RixShadingPlugin-getparamtable
https://rmanwiki.pixar.com/display/REN/RixShadingContext#RixShadingContext-allocate
https://rmanwiki.pixar.com/display/REN/RixShadingContext#RixShadingContext-allocate

/1 Find the number of outputs

Ri xSCPar aml nf o const* paranilfabl e = Get Par anifabl e() ;

int nunmCutputs = -1;

whi | e (paraniabl e[++nunfut put s] . access == k_Ri xSCQut put) {}

/1 Allocate and bind our outputs

Ri xShadi ngCont ext: : Al | ocat or pool (sctx);

Qut put Spec* out = pool . Al | ocFor Patt er n<Qut put Spec>(hunQut put s) ;
*out puts = out;

*nout puts = nunQut put s;

/1 1ooping through the different output ids
for (int i =0; i < nunCutputs; ++i)
{
out[i].paramd = i;
out[i].detail = k_Ri xSCl nvalidDetail;
out[i].value = NULL;
type = paraniable[i].type; // we know this

sct x->CGet Param nfo(i, & ype, &cinfo);
if(cinfo == k_Ri xSCNet wor kVal ue)

{
if(type == k_Ri xSCCol or)
{
out[i].detail = k_Ri xSCVaryi ng;
out[i].value = pool.AllocForPattern<Rt Col or RGB>(sct x->nunPts);
}
else if(type == k_Ri xSCFl oat)
{
out[i].detail = k_Ri xSCVaryi ng;
out[i].value = pool.All ocForPattern<RtFl oat >(sct x->nunPts);
}
}

Finally, the pattern can now actually compute the values that go into the output buffers. This is typically done by using the inputs and looping through the

number of shaded points Ri xShadi ngCont ext : : nunPt s to compute some values that are stored in the allocated output buffers.

Rt Col or RGB* out Col or = (Rt Col or RGB*) out[k_resul t RGB]. val ue;
for (int i=0; i<sctx->nunPts; i++)

{
/1 Compute sone output values based on your input. Here we assune
/1 outColor is the nmenory buffer allocated for an output paraneter,
/1 and inputCol or and inputFloat are two inputs that were returned from
/1 Eval Param
if (style == 1)
{
outColor[i] = inputColor[i] * inputFloat[i];
}
}

In the simple example above, outColor is assigned the buffer that was allocated corresponding to the private enumeration value k_r esul t RGB, which
matches the position of that output in the parameter table. (So long as the output parameters are at the beginning of the parameter table, reuse of this
enumeration is valid for this purpose.) We assume the st yl e variable was a uniform Rt | nt input value, so there is only one value for all the points in the
shading context. Meanwhile, the i nput Col or and i nput FI oat variable were varying instead of uniform, so they are pointers to an array of Rt Col or RGB
values and array of Rt FI oat values respectively, one for each shaded point in the shading context.

The Conput eQut put Par ans() method should return O if no error occurred while calculating the output, otherwise it should return a non-zero integer

value.

Testing Your Pattern Plugin

After you have implemented the code for your pattern plugin, you can build it using the commands listed in the Compiling Plugins page. The next step is to
test your plugin. To test it, you'll need to make sure prman can find your plugin in the standardrixpluginpath list of directories, which is defined
in SRMANTREE/etc/rendermn.ini as:

/ st andar dri xpl ugi npat h ${ RMANTREE}/ | i b/ RI S/ pat t er n: ${ RMANTREE} / | i b/ RI S/ bxdf : ${ RMANTREE}/ | i b/ RI S
/integrator: ${ RMANTREE}/ | i b/ Rl S/ proj ection

You can add a rendermn.ini file to your HOME directory and modify the standardrixpluginpath value to contain the directory where your pattern plugin is
located.

Then you can try to render this RIB file after you have replaced "PxrCustomPattern" with the name of your pattern plugin and connect your pattern's
output parameter to one of the input parameters of the PxrDiffuse Bxdf:

Di splay "patternTest" "franebuffer" "rgba"
Quantize "rgba" 255 0 255 0
Format 128 128 1
Proj ection "perspective" "fov" [45]
Hi der "raytrace" "string integrationmde" ["path"]
Integrator "PxrPathTracer" "integrator"
Wor | dBegi n
AttributeBegin
Attribute "identifier" "name" ["spherel"]
Translate 0 0 2.75
Pattern "PxrCustonPattern” "custonPattern”
Bxdf "PxrDiffuse" "snooth"
"reference col or diffuseColor" "custonPattern: outCol or"
Sphere 1.0 -1.0 1.0 360.0
AttributeEnd
Wor | dEnd

Texture Baking

RenderMan can optionally bake pattern outputs to 2D or 3D textures by evaluating those patterns over an output manifold. Pattern plug-ins that wish to
bake outputs should provide custom implementations of the RixPattern::Bake2dOutput or RixPattern::Bake3dOutput methods that return true. When in bak
e mode, RenderMan queries these methods to describe the output manifold and to initialize display drivers. For 2d atlas/UDIM outputs that set RixPattern::
Bake2dSpec::atlas to true, RenderMan will query RixPattern::Bake2dOutput once for each UV tile.

It is possible to write a generalized baking node that bakes the output of arbitrary upstream pattern graphs. For example, see PxrBakeTexture and
PxrBakePointCloud pattern plug-ins:

Hi der "bake"

Format 512 512 1

Di spl ay "render.exr" "openexr" "rgba"
Proj ection "perspective" "fov" [30]
Translate 0 0 5

Wor | dBegi n
AttributeBegin
Pattern "PxrFractal" "pattern"

Pattern "PxrBakeTexture" "baked" "reference color inputRGB" ["pattern:resultRGB"]
"string filename" ["bake.tif"] "string display" ["tiff"]
"string prinmvar" ["st"] "int resolutionX' [512] "int resolutionY" [512]
Bxdf "PxrDiffuse" "default" "reference color diffuseColor" ["baked:resultRGB"]
Sphere 1 -1 1 360 "varying float[2] st" [0 01 001 1 1]
Attribut eEnd
Wor | dEnd

https://renderman.pixar.com/resources/RenderMan_20/compilingPlugins.html
https://rmanwiki.pixar.com/display/REN/Baking
https://rmanwiki.pixar.com/display/REN/Baking

	Writing Patterns

