
RixShadingPlugin

Introduction
Plugin vs. Plugin instance vs. Closures
Plugin Instance C++ representation

void RixShadingPlugin::CreateInstanceData(InstanceData*)
XXX* RixYYYPlugin()::CreateXXX()

Closures
Parameter Table

Dynamic Parameters

Initialization and Synchronization
Plugin initialization
Plugin instance initialization
Plugin Synchronization
Plugin instance synchronization
Closures synchronization
Interactive rendering sessions

Subtleties
Known limitations

Misc
Overview
Examples

PxrDiffuse
PxrDirt

Installation
Creating an .Args File

Introduction

RixShadingPlugin is a base class characterizing the requirements of a RenderMan renderer from shading plugins: RixBxdfFactory, RixDisplacem
entFactory, RixDisplayFilter, RixIntegratorFactory, , RixLightFactory RixLightFilter, RixPattern, RixProjectionFactory,
and RixSampleFilter. These are plugins that implement services for the renderer.

This class provides entry points that are executed with a mix of various frequencies:

once per rendering session
once per render (in an interactive session, there can be multiple renders)
once per batch of points to be shaded (i.e.)RixShadingContext
multiple times per batch of points to be shaded

and various granularity:

once per plugin
once per of the shading plugin (as defined in the next section)instance
multiple times per of the shading plugininstance

Plugin vs. Plugin instance vs. Closures

Here, the term is unfortunately overloaded, and it is important to differentiate between: an as defined by the unique instance instance of a shading plugin
set of parameters given to the material definition, and a which involves an actual memory allocation, construction, and destruction of an C++ instance
object.

Each use of a shading plugin with a different set of parameters will be considered as separate . A render using two patterns plugin instance PxrTexture
(each using a different texture file parameter), will trigger the initialization of the (unique) plugin, and the initialization of two of the PxrTexture instances P

 plugin (independently of the internal C++ representation chosen).xrTexture

Finally, some plugin types will create short-lived objects referred to as . These transient objects are created for a given plugin instance, for a given closures
batch of points. They allow the pre-computation of data that can be re-used during multiple computations associated with the the given batch of points.

Plugin Instance C++ representation

Depending on the plugin type, may correspond to different internal C++ structures.plugin instances

void RixShadingPlugin::CreateInstanceData(InstanceData*)

Some shading plugin types can create private instance data using the CreateInstanceData() method. Instance data would typically be computed from
the unique evocation parameters, supplied to CreateInstanceData() via the RixParameterList class. This occurs when the shading plugin
instance is created for the first time from those parameters (e.g. at the time a material definition is created (i.e. very early on in a render)).

http://rmanwiki-test.pixar.com/display/REN24/Writing+Bxdfs
http://rmanwiki-test.pixar.com/display/REN24/Writing+Displacements
http://rmanwiki-test.pixar.com/display/REN24/Writing+Displacements
http://rmanwiki-test.pixar.com/display/REN24/Writing+Display+Filters
http://rmanwiki-test.pixar.com/display/REN24/Writing+Integrators
https://rmanwiki.pixar.com/display/REN/Writing+Lights
http://rmanwiki-test.pixar.com/display/REN24/Writing+Light+Filters
http://rmanwiki-test.pixar.com/display/REN24/Writing+Patterns
http://rmanwiki-test.pixar.com/display/REN24/Writing+Projections
http://rmanwiki-test.pixar.com/display/REN24/Writing+Sample+Filters

Using these parameters, plugins may bake a cached understanding of their behavior, requirements, or even precomputed results into a private
representation that the renderer will automatically track with the instance and supply back to the plugin methods. This allows the plugin to cache and
therefore avoid repeated computations when processing each batch of points. In this case, the instance data is essentially a C++ structure representing
one instance of the plugin.

If the shading plugin does create instance data, it should be stored in . If the data requires non-trivial deletion, InstanceData::data InstanceData::
 should be set to a function that the renderer will invoke when the plugin instance will no longer be needed. A trivial implementation of freefunc CreateIn

 produces no instance data and returns without modifying any member of the provided structure.stanceData() InstanceData

Any instance data that is created will be automatically returned to the shading plugin methods by the renderer when the compute methods are
invoked. The implementation of the compute methods is now free to use this instance data to reduce the cost of processing the current batch of points.

For example, the RixPattern plugin type uses this mechanism:

RixPattern::CreateInstanceData(..., RixParameterList const*, InstanceData*)
RixPattern::ComputeOutputParams(RixShadingContext const*, ..., RtPointer data)

The other plugin types using this representation are: , , and , RixBxdf RixDisplacement RixDisplayFilter RixLightFilter RixSampleFilter.
 and additionally make use of closures. RixBxdf RixDisplacement

XXX* RixYYYPlugin()::CreateXXX()

Some other shading plugin types use a different mechanism instead of . Generally, the sub-class CreateInstanceData() RixShadingPlugin
associated with the plugin type will expose a method, used to build a new C++ object. In this case, the C++ object is a direct representation CreateXXX()
of the . Generally, the render will then call methods on the newly minted C++ object, instead of using methods and plugin instance RixShadingPlugin
passing an instance data pointer.

For example, the RixProjection plugin type uses this mechanism:

RixProjection* RixProjectionFactory::CreateProjection(..., RixParameterList const*)
RixProjection::Project(RixProjectionContext&)

The other plugin types using this representation are: and .RixIntegrator RixLightFactory

Closures

Generally, the subclass (e.g.) will expose only a few compute methods (e.g. RixShadingPlugin RixPattern RixPattern::
) that is executed once per batch of points (), per plugin instance. When a specific class is used to ComputeOutputParams() RixShadingContext

represent the plugin instance (e.g.), it will usually expose the compute methods itself (e.g.).RixProjection RixProjection::Project()

However some plugins types require particular computations to happen multiple times for a given plugin instance, for a given batch of points. In this case,
a closure object will be created. Note that the closures are built after the plugin instance has been created. Since any instance data (created by CreateIn

) is be automatically returned to the shading plugin methods by the renderer, the plugin is free to use this instance data to reduce the cost stanceData()
of creating the associated closure.

Bxdf plugins are the best example of this:

 fill the with a representation of the bxdf instance, and this will provided RixBxdfFactory::CreateInstanceData() InstanceData::data
to the closure creation method below.

 returns a closure for the provided batch RixBxdf RixBxdfFactory::BeginScatter(RixShadingContext*, ..., RtPointer data)
of points and plugin instance

 and may be called repeatedly on this closure. These methods are able to RixBxdf::GenerateSamples() RixBxdf::EvaluateSamples()
share and re-use any precomputation that may have happened in the closure constructor.RixBxdf

Parameter Table

All shading plugins are expected to return a description of their input and output parameters via the method. This returns a pointer to GetParamTable()
an array of , containing one entry for each input and output parameter, as well as an extra empty entry to mark the end of the table. This RixSCParamInfo
parameter table is used by the renderer to ensure proper type checking and validate the connections of upstream and downstream nodes. As such, each
entry in the table should set a name, a type (enumeration), detail (varying vs uniform, enumeration), and access (input vs RixSCType RixSCDetail
output, enumeration). These declarations also need to be kept in sync with the associated .RixSCAccess .args file

For an example of usage, consider a pattern plugin which returns a color. The output parameter is a color, so it is defined in the parameter table as:resultC

RixSCParamInfo("resultC", k_RixSCColor, k_RixSCOutput)

A float input parameter named can be defined as:density

RixSCParamInfo("density", k_RixSCFloat)

While a float[16] input parameter named can be defined as:placementMatrix

RixShadingPlugin::CreateInstanceData() may be called in multiple threads, and so its implementation should be re-entrant and
thread-safe.

https://rmanwiki.pixar.com/display/REN/Args+File+Reference

RixSCParamInfo("placementMatrix", k_RixSCFloat, k_RixSCInput, 16)

The full implementation of for this plugin would look something like this:GetParamTable()

RixSCParamInfo const *
MyPattern::GetParamTable()
{
 static RixSCParamInfo s_ptable[] =
 {
 // outputs
 RixSCParamInfo("resultC", k_RixSCColor, k_RixSCOutput),
 // inputs
 RixSCParamInfo("density", k_RixSCFloat),
 RixSCParamInfo("placementMatrix", k_RixSCFloat, k_RixSCInput, 16),
 RixSCParamInfo(), // end of table
 };
 return &s_ptable[0];
}

The ordinal position of a parameter in the parameter table is the integer used to evaluate parameter inputs using the paramId RixShadingContext::
method. Because these need to be kept in sync, EvalParam it is recommended that you create a parameter enumeration (a private type) to keep enum

track of the order that your parameters were created in the table. The enumeration can be used later on when calling RixShadingContext::EvalParam
 in the body of the shader. Following the three parameter table entries above:

enum paramId
{
 k_resultC=0, // output
 k_density,
 k_placementMatrix,
 k_numParams
};

Dynamic Parameters

A plugin can create its parameter table dynamically based on the parameters provided to each instance of the plugin. This dynamically created table is
created using the method, and should be saved in the member of the If the associated CreateInstanceData() paramtable InstanceData.
memory need to be freed, if should be taken care of in the routine. Generally, static interfaces should be preferred over dynamic interfaces freefunc()
due to their extra memory expense. If the member remains null, all instances will share the parameter table returned by . paramtable GetParamTable()
In order to prevent the renderer from filtering out dynamic parameters as bad inputs, a plugin that is using a dynamically created table should have a k_Rix

 entry in its plugin parameter table.SCAnyType

Initialization and Synchronization

Plugin initialization

In order to initialize the plugin, the renderer will call once. Even if the plugin is evoked multiple times during the render with different arguments, Init() In
 will still be called only once during the lifetime of the render. The parameter can be used by the plugin to request any it() RixContext RixInterfaces

services provided by the renderer. Any expensive memory allocations or operations that can be reused during the lifetime of the plugin can be performed
in this routine. Upon successful initialization, this routine should return a zero status.

Finalize() is the companion to , called at the end of rendering with the expectation that any data allocated within the implementation Init() Init()
will be released.

Plugin instance initialization

Depending on the paradigm used by the plugin type, or will be called once per plugin instance:CreateInstanceData() CreateXXX()

In order to facilitate the reuse of the same parameter enumeration for , it is highly recommended that all outputs be pattern output computation
placed at the beginning of the parameter table.

The method will only ever be called once per plugin.Init()

https://rmanwiki.pixar.com/display/REN/RixShadingContext#RixShadingContext-evalparam
https://rmanwiki.pixar.com/display/REN/RixShadingContext#RixShadingContext-evalparam
https://rmanwiki.pixar.com/display/REN/RixShadingContext#RixShadingContext-evalparam
https://rmanwiki.pixar.com/display/REN/Writing+Patterns#WritingPatterns-ComputeOutputParams

CreateInstanceData() allows the plugin instance to create private data (stored in), that will then be provided back to the InstanceData::data
various plugin methods the renderer will call during rendering.
CreateXXX() returns a C++ object that should store its own representation of the plugin instance. The renderer will call methods on this object
during rendering (instead of calling plugin methods).

The renderer provides the unique evocation parameters that triggered the creation of the plugin instance through the the class.RixParameterList

RixParameterList allows for the evaluation of the plugin instance parameters via the method. To aid in this, it allows for the querying via EvalParam()
 of whether the parameters have been unset (and are therefore at their default value), set as a uniform value, RixParameterList::GetParamInfo()

or are part of a , i.e. the parameter is computed by an upstream node in the shading graph. A network connection is understood to be network connection
a varying quantity, and its value cannot be evaluated at the time that is evoked; this is why will return CreateInstanceData EvalParam() k_RixSCInv

 if the parameter is a network connection. Otherwise, can be used to get an understanding of the uniform, non-varying alidDetail EvalParam()
parameters that are passed to the shading instance, and these can be used to perform any precomputations as needed.

Plugin Synchronization

The routine allows the plugin to respond to synchronization signals delivered by the renderer. This call may happen multiple times during Synchronize()
a render session and/or during a given render.

The renderer may provide additional information to the plugin via the input parameter . These signals include:RixParameterList

k_RixSCRenderBegin: The renderer is being initialized.
k_RixSCRenderEnd: The renderer is about to end.
k_RixSCInstanceEdit: Currently unused.
k_RixSCCancel: Currently unused.
k_RixSCCheckpointRecover: A signal that the renderer is about to restart rendering from a checkpoint. The parameter list will contain a single
constant integer "increment" which contains the increment value from which the renderer will restart.
k_RixSCCheckpointWrite: A signal that the renderer is about to write a checkpoint. The parameter list will contain two values: a constant
integer "increment" indicating the increment value the renderer will write, and a constant string "reason" which contains one of three values:
"checkpoint", "exiting", or "finished", indicating why the renderer is writing the checkpoint.
k_RixSCIncrementBarrier: A signal that the rendering of an new increment is about to begin. This signal will only be received if the integrator
has set to true in the . The parameter list will contain a single constant integer wantsIncrementBarrier RixIntegratorEnvironment
"increment" which contains the increment value the renderer is about to render.

Plugin instance synchronization

Similarly to , the method allows the plugin instance to update its state when a render starts.Synchronize() SynchronizeInstanceData()

There are some subtle differences with though:Synchronize()

there is no synchronization message, it is always assumed to be k_RixSCRenderBegin
the plugin instance must explicitly subscribe to this mechanism, by appropriately setting InstanceData::synchronizeHints
duringCreateInstanceData()

If the plugin type doesn't use but , the created objects will sometimes expose an or mCreateInstanceData() CreateXXX() Edit() Synchronize()
ethod.

Closures synchronization

Closures are transient objects with a very short lifetime, and are re-created with such a frequency that there is no need for synchronization mechanism.

Interactive rendering sessions

Because and are only called once during a rendering session, they are unable to capture edits that may have Init() CreateInstanceData()
happened after the plugin instance has been initialized. In some cases, this includes edits that may have happened before the render starts, yielding
counter-intuitive behaviors.

It is therefore strongly recommended for these two methods to only rely on data that was explicitly provided (e.g. the plugin instance parameter list). In
particular, special care should be taken not to query options or anything related to the render state (displays, integrator environment, lpe-related quantities,
etc...) for the following reasons:

The method will only ever be called once per plugin instance (a unique set of parameters).CreateInstanceData()

The method may be called multiples times during a rendering session, and in some cases during a render (for the 'increment Synchronize()
barrier' message).

The method will always be called before a new render starts.SynchronizeInstancedata()

options may be edited after these methods have been called
displays and render state will most likely be undefined when these methods are called, and may be subsequently edited

In order to support general edits, and to be future-proof, the and should be used instead to query Synchronize() SynchronizeInstanceData()
options and render state.

Subtleties

RixProjection (the type of objects created by to represent projection plugin instances) RixProjectionFactory::CreateProjection()
doesn't expose a or method. Instead, will be called, allowing for the plugin to set Edit() Synchronize() RixProjection::RenderBegin()
the . There is currently no way plugins to opt-in / opt-out of the RixIntegratorEnvironment::deepMetric RixProjection RixProjectio

 call.n::RenderBegin()
RixLight (the type of objects created by to represent light plugin instances) currently uses a mix of RixLightFactory::CreateLight() Cre

 and paradigms. It is strongly recommended to keep empty and put the ateInstanceData() CreateLight() CreateInstanceData()
majority of the implementation in .CreateLight()
RixIntegrator ((the type of objects created by to represent integrator plugin instances) RixIntegratorFactory::CreateIntegrator()
exposes . This method uses a slightly different signature, including a synchronization message, and it is currently not possible to Synchronize()
opt-in/opt-out of the synchronization calls.

Known limitations

RixBxdf::GetInstanceHints() is called after but before . As a consequence, CreateInstanceData() SynchronizeInstanceData()
if a bxdf instance's hint depends on a global option or on the render state, edits will have no effect. This will lead to counter-intuitive behaviors,
and it is strongly recommended for bxdf instance hints to only depend on the shader parameters provided to CreateInstanceData()
RixPattern::Bake2dOutput() and are called after but before RixPattern::Bake3dOutput() CreateInstanceData() Synchronize

. The same limitations as the one described in the item above apply.InstanceData()
RixLight::Edit() and are currently not called.RixLight::SynchronizeInstanceData()

Misc

Overview

The following table summarizes the structure of the various RixShadingPlugin, in relation to initialization and synchronization. All plugins use the RixShadi
 and calls.ngPlugin::Init() RixShadingPlugin::Finalize()

Plugin RixShadingPlugin

subclass

Instance
representation

Generates a closure

(per RixShadingContext)

bxdf RixBxdfFactory InstanceData::data Yes, RixBxdf

displacement RixDisplacementFactory InstanceData::data Yes, RixDisplacement

display filter RixDisplayFilter InstanceData::data No

integrator RixIntegratorFactory RixIntegrator No

light RixLightFactory RixLight No

light filter RixLightFilter InstanceData::data No

pattern RixPattern InstanceData::data No

projection RixProjectionFactory RixProjection No

sample filter RixSampleFilter InstanceData::data No

Examples

PxrDiffuse

First, note that while the bxdf plugin is published and exposed as 'PxrDiffuse', it is comprised of two classes:

PxrDiffuseFactory, that inherits from , a subclass of . This is the class that manages instance data RixBxdfFactory RixShadingPlugin
and associated closures.
PxrDiffuse, that inherits from . This is the type used by the bxdf closures.RixBxdf

As an example of usage of instance data, consider the bxdf. Although it is a fairly trivial bxdf, it does handle presence and opacity, and the PxrDiffuse
renderer passes instance data to the interface in order to get an understanding of the requirements for RixBxdfFactory::GetInstanceHints()
presence and opacity. In the following code, checks its own presence parameter to see if it is a connection, knowing that its filPxrDiffuseFactory Args
e only allows presence to be set to a default value (and therefore is trivially fully opaque) or is connected (and therefore requires the renderer to perform
presence calculations). If it is connected, then it sets the instance data to be the same bitfield that is requested by the renderer from InstanceHints Rix

.Bxdf::GetInstanceHints

 plist->GetParamInfo(k_presence, &typ, &cnx1);
 if(cnx1 == k_RixSCNetworkValue)
 {
 if (cachePresence == 0)
 {
 req |= k_ComputesPresence;
 }
 else
 {
 req |= k_ComputesPresence | k_PresenceCanBeCached;
 }
 }

PxrDirt

For a more complicated example of instance data usage, consider the pattern. Its instance data routine caches the values of many uniform PxrDirt
parameters and reuses them in , knowing that its .args file prohibits those parameters from being set to network PxrDirt::ComputeOutputParams()
connections.

 Data *data = static_cast<Data*>(instanceData->data);

 data->numSamples = 4;
 data->distribution = k_distributionCosine;
 data->cosineSpread = 1.0f;
 data->falloff = 0.0f;
 data->maxDistance = 0.0f;
 data->direction = k_directionOutside;
 data->raySpread = 1.0f;

 params->EvalParam(k_numSamples, 0, &data->numSamples);
 data->numSamples = RixMax(1, data->numSamples);
 params->EvalParam(k_distribution, 0, &data->distribution);
 params->EvalParam(k_cosineSpread, 0, &data->cosineSpread);
 params->EvalParam(k_falloff, 0, &data->falloff);
 params->EvalParam(k_maxDistance, 0, &data->maxDistance);
 params->EvalParam(k_direction, 0, &data->direction);

Installation

RenderMan will search for shading plugins on demand, under the searchpath. Custom shading plugins can be installed in a directory that can rixplugin
either be appended to the settings in ; or the directory can be appended to the search path which is emitted /rixpluginpath Rendermn.ini rixplugin
by the bridge.

Creating an .Args File

If you would like RenderMan for Maya or RenderMan for Katana to recognize your plugin and provide a user interface for changing input parameters and
connecting output parameters to other nodes, then you will need to create an args file for your shading plugin. The args file defines the input and output
parameters in XML so that tools like RMS or Katana can easily read them, discover their type, default values, and other information used while creating the
user interface for the pattern node. Please consult the for more information.Args File Reference

https://rmanwiki.pixar.com/display/REN/Rendermn.ini
https://rmanwiki.pixar.com/display/REN/Args+File+Reference

	RixShadingPlugin

