
Graphics State
The RenderMan Interface is similar to other graphics packages in that it maintains a . The graphics state contains all the information needed graphics state
to render a geometric primitive. RenderMan Interface commands either change the graphics state or render a geometric primitive. The graphics state is
divided into two parts: a global state that remains constant while rendering a single image or frame of a sequence, and a current state that changes from
geometric primitive to geometric primitive. Parameters in the global state are referred to as , whereas parameters in the current state are referred to options
as . Options include the camera and display parameters, and other parameters that affect the quality or type of rendering in general (e.g. global attributes
level of detail, number of color samples, etc.). Attributes include the parameters controlling appearance or shading (e.g. color, opacity, surface shading
model, light sources, etc.), how geometry is interpreted (e.g., orientation, subdivision level, bounding box, etc.), and the current modeling matrix. To aid in
specifying hierarchical models, the attributes in the graphics state may be pushed and popped on a graphics state stack.

Modes

The graphics state also maintains the interface . The different modes of the interface are entered and exited by matching Begin-End command mode
sequences.

 ()RiBegin RtToken name
 (void)RiEnd

RiBegin creates and initializes a new rendering context, setting all graphics state variables to their default values, and makes the new context the active
one to which subsequent Ri routines will apply. Any previously active rendering context still exists, but is no longer the active one. The type of rendering
context is determined by :name

Rendering If is the name of a renderer, to select among various implementations that may be available, or RI_RENDER for the default renderer.name

Detached rendering If obeys a special syntax, an external process will be launched and further Ri calls will be serialized in the form of RIB and name
piped to the standard input of the external process:

RiBegin("launch:executable? <options>")

In this mode, all Ri calls other than RiEnd are non-blocking. The external process operates asynchronously with respect to the client
application. RiEnd signals the external process to exit and all interprocess communication with the external process is shut down. RiEnd does not return
until this is complete.

The command line options to the executable can be anything, but three special wildcard options are needed to enable: the Ric API, display services in the
client process, and error message processing in the client process. The command needed to launch prman with all of these services is:

RiBegin("launch:prman? -ctrl $ctrlin $ctrlout -dspy $dspyin $dspyout -xcpt $xcptin")

The Ri Control API provides functions a client application will find useful when interacting with a detached prman process. These functions will not work if
the launch string does not contain $ctrlin $ctrlout"."-ctrl

For off-line rendering, display drivers are loaded as dynamic libraries into the renderer's process. When writing an interactive application, it is often
desireable to load a user-written display driver into the client application process and configure prman to ship pixels to the driver through a fast, low-latency
interprocess communication channel. The $dspyin $dspyout" option directs the rendering context to configure the detached prman to send pixels "-dspy
back to the client application. To load a display driver directly, an application should use DspyRegisterDriverTable described in Direct-linked Display Driver
Registration

Finally, an application may want error messages processed by the error handler installed in the application's process. The $xcptin" option directs the "-xcpt
rendering context to send error messages from the detached process to the client process for delivery.

RIB generation Otherwise, is assumed to be the name of a file to create.name

Supplying RI_NULL for indicates that the default implementation and/or output file should be used.name

RiEnd terminates the active rendering context, including performing any cleanup operations that need to be done. After RiEnd` is called, there is no active
rendering context until another RiBegin or RiContext is called. All other RenderMan Interface procedures must be called within an active context (the only
exceptions are RiErrorHandler, RiOption, and RiContext).

 (void)RtContextHandle RiGetContext
 (handle)RiContext RtContextHandle

RiGetContext returns a handle for the current active rendering context. RiContext sets the current active rendering context to be the one pointed to by
handle. Any previously active context is not destroyed. There is no RIB equivalent for these routines. Additionally, other language bindings may have no
need for these routines, or may provide an obvious mechanism in the language for this facility (such as class instances and methods in C++).

Note that only RIB contexts may be created by calling RiBegin(), with the filename for that RIB being the name supplied to RiBegin(). An immediate
rendering context cannot be created, save for the one already created for you by the renderer. Thus, the primary purpose of the RiContext call in PRMan is
to create RIB files from within a procedural DSO. It is important in this case to always call RiGetContext() at the beginning of the DSO, and then restore the
context to its previous value using RiContext() at the end if you create or set any contexts within your DSO. The active context upon entry should always
be the immediate rendering context unless you violate this recommendation.

 ()RiFrameBegin RtInt frame
 (void)RiFrameEnd

The bracketed set of commands mark the beginning and end of a single frame of an animated sequence. frame is the number RiFrameBegin-RiFrameEnd
of this frame. The values of all of the rendering options are saved when RiFrameBegin is called, and these values are restored when RiFrameEnd is called.

All lights and retained objects defined inside the frame block are removed and their storage reclaimed when RiFrameEnd is RiFrameBegin-RiFrameEnd
called (thus invalidating their handles).

All of the information that changes from frame to frame should be inside a frame block. In this way, all of the information that is necessary to produce a
single frame of an animated sequence may be extracted from a command stream by retaining only those commands within the appropriate frame block
and any commands outside all of the frame blocks. This command need not be used if the application is producing a single image.

RIB BINDING

 intFrameBegin
 -FrameEnd

EXAMPLE

 (14);RiFrameBegin

 ()RiWorldBegin
 ()RiWorldEnd

When RiWorldBegin is invoked, all rendering options are frozen and cannot be changed until the picture is finished. The is world-to-camera transformation
set to the and the is reinitialized to the identity. Inside an block, the current transformation current transformation RiWorldBegin-RiWorldEnd current

 is interpreted to be the . After an RiWorldBegin, the interface can accept geometric primitives that define the transformation object-to-world transformation
scene. (The only other mode in which geometric primitives may be defined is inside a block.) Some rendering programs may RiObjectBegin-RiObjectEnd
immediately begin rendering geometric primitives as they are defined, whereas other rendering programs may wait until the entire scene has been defined.

RiWorldEnd does not normally return until the rendering program has completed drawing the image. If the image is to be saved in a file, this is done
automatically by RiWorldEnd.

All lights and retained objects defined inside the world block are removed and their storage reclaimed when RiWorldEnd is RiWorldBegin-RiWorldEnd
called (thus invalidating their handles).

If baking for re-rendering has been enabled with the options:

Option "render" "int rerenderbake" [1]
Option "render" "string rerenderbakedbdir" "dirname"

a database for re-rendering will be written to disk by the time RiWorldEnd returns.

RIB BINDING

 -WorldBegin
 -WorldEnd

EXAMPLE

 ();RiWorldBegin
 ("teapot", RI_NULL);RiGeometry

 ();RiWorldEnd

The following begin-end pairs also place the interface into special modes.

 ()RiSolidBegin
 ()RiSolidEnd

 ()RiMotionBegin
 ()RiMotionEnd

 ()RiObjectBegin
 ()RiObjectEnd

Define an object prototype or object group definition that can be instantiated with ObjectInstance. This calls resets the graphics state so that no attributes
are active. Attribute values existing at the time ObjectInstance is called will be inherited by the instance. Any attribute explicitly defined inside an
ObjectBegin/ObjectEnd block will have higher precedence and will override those attributes. This is similar to behavior of ArchiveBegin/ArchiveEnd block
overriding the attribute values present when using ReadArchive.

 ()RiAttributeBegin
 ()RiAttributeEnd

 ()RiTransformBegin
 ()RiTransformEnd

These pairs save and restore the attributes in the graphics state, and save and restore the current transformation, respectively. All begin-end pairs (except
 and) implicitly save and restore attributes. Begin-End blocks of the various types may be RiTransformBegin-RiTransformEnd RiMotionBegin-RiMotionEnd

nested to any depth, subject to their individual restrictions, but it is never legal for the blocks to overlap.

 RtToken
 (char *name, char *declaration)RiDeclare

Declares the name and type of a variable. The declaration indicates the size and semantics of values associated with the variable, or may be RI_NULL if
there are no associated values. This information is used by the renderer in processing the variable argument list semantics of the RenderMan Interface.

The syntax of declaration is:

[class] [type] [[n]]

where may be , , or (as in the shading language), or (position data, such as bicubic control points), and may be class constant uniform varying vertex type
one of: , , , , , , , , and . Additionally, the is used to describe 4D homogeneous coordinates (for float integer string color point vector normal matrix hpoint hpoint
example, used to describe NURBS control points). Any values are converted to ordinary points by dividing by the homogeneous coordinate just hpoint
before passing the value to the shader.

The optional bracket notation indicates an array of n type items, where n is a positive integer. If no array is specified, one item is assumed. If a class is not
specified, the identifier is assumed to be uniform.

RiDeclare also installs into the set of known tokens and returns a constant token that can be used to indicate that variable. This constant token will name
generally have the same efficient parsing properties as the RI_ versions of the predefined tokens.

RIB BINDING

 name declarationDeclare

EXAMPLE

 ("Np", "uniform point");RiDeclare
 ("Cs", "varying color");RiDeclare

 "st" "varying float[2]"Declare

Inline Declarations

In addition to using RiDeclare to globally declare the type of a variable, the type and storage class of a variable may be declared inline
. For example:

RiSurface ("mysurf", "uniform point center", ¢er, RI NULL);
RiPolygon (4, RI P, &points, "varying float temperature", &temps, RI NULL);
Patch "bilinear" "P" [...] "vertex point Pref" [...] "varying float[2] st" [...]

When using these inline declarations, the storage class and data type prepend the token name. Thus, any RenderMan Interface
routines or RIB directives that take user-specified data will examine the tokens, treating multi-word tokens that start with class and
type names as an inline declaration. The scope of an inline declaration is just one data item - in other words, it does not alter the
global dictionary or affect any other data transmitted through the interface. Any place where user data is used and would normally
require a preceding RiDeclare, it is also legal to use an inline declaration.

Mode Example

The following is an example of the use of these procedures, showing how an application constructing an animation might be structured. In the example, an
object is defined once and instanced in subsequent frames at different positions.

RtObjectHandle BigUglyObject;
RiBegin();
 BigUglyObject = RiObjectBegin();
 ...
 RiObjectEnd();
 /* Display commands */
 RiDisplayChannel(...):
 RiDisplay(...):
 RiFormat(...);
 RiFrameAspectRatio(1.0);
 RiScreenWindow(...);
 RiFrameBegin(0);
 /* Camera commands */
 RiProjection(RI_PERSPECTIVE,...);
 RiRotate(...);
 RiWorldBegin();
 ...
 RiColor(...);
 RiTranslate(...);
 RiObjectInstance(BigUglyObject);
 ...
 RiWorldEnd();
 RiFrameEnd();
 RiFrameBegin(1);
 /* Camera commands */
 RiProjection(RI_PERSPECTIVE,...);
 RiRotate(...);
 RiWorldBegin();
 ...
 RiColor(...);
 RiTranslate(...);
 RiObjectInstance(BigUglyObject);
 ...
 RiWorldEnd();
 RiFrameEnd();
 ...
RiEnd();

Transformations

Transformations are used to transform points between coordinate systems. At various points when defining a scene the is used to current transformation
define a particular coordinate system. For example, RiProjection establishes the camera coordinate system, and RiWorldBegin establishes the world
coordinate system.

The is maintained as part of the graphics state. Commands exist to set and to concatenate specific transformations onto the current transformation current
. These include the basic linear transformations translation, rotation, skew, scale and perspective, and non-linear transformations transformation

programmed in the Shading Language. Concatenating transformations implies that the is updated in such a way that the new current transformation
transformation is applied to points the old . Standard linear transformations are given by 4x4 matrices. These matrices are before current transformation
premultiplied by 4-vectors in row format to transform them.

The following three transformation commands set or concatenate a 4x4 matrix onto the :current transformation

 ()RiIdentity

Set the to the identity.current transformation

RIB BINDING

 -Identity

EXAMPLE

 ();RiIdentity

 (transform)RiTransform RtMatrix

Set the to the transformation .current transformation transform

RIB BINDING

 Transform transform

EXAMPLE

 [.5 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1]Transform

 (transform)RiConcatTransform RtMatrix

Concatenate the transformation the . The transformation is applied before all previously applied transformations, that transform onto current transformation
is, before the .current transformation

RIB BINDING

 ConcatTransform transform

EXAMPLE

 foo = { 2.0, 0.0, 0.0, 0.0, 0.0, 2.0, 0.0, 0.0,RtMatrix
 0.0, 0.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0 };

 (foo);RiConcatTransform

The following commands perform local concatenations of common linear transformations onto the .current transformation

 (fov)RiPerspective RtFloat

Concatenate a perspective transformation onto the current transformation. The focal point of the perspective is at the origin and its direction is along the z-
axis. The field of view angle, , specifies the full horizontal field of view.fov

The user must exercise caution when using this transformation, since points behind the eye will generate invalid perspective divides which are dealt with in
a renderer-specific manner.

To request a perspective projection from camera space to screen space, an RiProjection request should be used; RiPerspective is used to request a
perspective modeling transformation from object space to world space, or from world space to camera space.

RIB BINDING

 fovPerspective

EXAMPLE

 90Perspective

 (dx, dy, dz)RiTranslate RtFloat RtFloat RtFloat

Concatenate a translation onto the .current transformation

RIB BINDING

 dx dy dzTranslate

EXAMPLE

 (0.0, 1.0, 0.0);RiTranslate

 (angle, dx, dy, dz)RiRotate RtFloat RtFloat RtFloat RtFloat

Concatenate a rotation of degrees about the given axis onto the .angle current transformation

RIB BINDING

 angle dx dy dzRotate

EXAMPLE

 (90.0, 0.0, 1.0, 0.0);RiRotate

 (sx, sy, sz)RiScale RtFloat RtFloat RtFloat

Concatenate a scaling onto the .current transformation

RIB BINDING

 sx sy szScale

EXAMPLE

 .5 1 1Scale

 (angle, dx1, dy1, dz1,RiSkew RtFloat RtFloat RtFloat RtFloat
 dx2, dy2, dz2)RtFloat RtFloat RtFloat

Concatenate a skew onto the . This operation shifts all points along lines parallel to the axis vector (). Points along the current transformation dx2, dy2, dz2
axis vector () are mapped onto the vector (), where specifies the angle (in degrees) between the vectors () and (dx1, dy1, dz1 x, y, z angle dx1, dy1, dz1 x, y,
), The two axes are not required to be perpendicular, however it is an error to specify an angle that is greater than or equal to the angle between them. A z

negative angle can be specified, but it must be greater than 180 degrees minus the angle between the two axes.

RIB BINDING

 angle dx1 dy1 dz1 dx2 dy2 dz2Skew
 [angle dx1 dy1 dz1 dx2 dy2 dz2]Skew

EXAMPLE

 (45.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0);RiSkew

Named coordinate systems

Shaders often need to perform calculations in non-standard coordinate systems. The coordinate systems with predefined names are: "raster," "screen,"
"camera," "world," and "object." At any time, the current coordinate system can be marked for future reference.

 (space)RiCoordinateSystem RtToken

This function marks the coordinate system defined by the current transformation with the name space and saves it. This coordinate system can then be
referred to by name in subsequent shaders, or in RiTransformPoints. A shader cannot refer to a coordinate system that has not already been named. The
list of named coordinate systems is global.

RIB BINDING

 spaceCoordinateSystem

EXAMPLE

 "lamptop"CoordinateSystem

 (name)RiScopedCoordinateSystem RtToken

Like RiCoordinateSystem, this function marks the coordinate system defined by the current transformation with the indicated and saves it. Unlike name
that call, the marked transformation is saved on a separate stack, independent of the global list maintained by RiCoordinateSystem. This stack is pushed
and popped by RiAttributeBegin andRiAttributeEnd calls (but not by RiTransformBegin and RiTransformEnd). Scoped coordinate system can then be
referred to by name in subsequent shaders, or in RiTransformPoints and RiCoordSysTransform, just like global coordinate systems. When searching for a
named coordinate system, a renderer should first check the scoped coordinate system stack; failing that, the global coordinate system list should be
checked.

RIB BINDING

 spaceScopedCoordinateSystem

EXAMPLE

 "lamptop"ScopedCoordinateSystem

 (name)RiCoordSysTransform RtToken

This function replaces the current transformation matrix with the matrix that forms the . This permits objects to be placed directly into coordinate system
special or user-defined coordinate systems by their names.

RIB BINDING

 nameCoordSysTransform

EXAMPLE

 "lamptop"CoordSysTransform

 *RtPoint
 (fromspace, tospace,RiTransformPoints RtToken RtToken

 n, points)RtInt RtPoint

This procedure transforms the array of points from the coordinate system to the coordinate system . This array contains points. If the fromspace tospace n
transformation is successful, the array is returned. If the transformation cannot be computed for any reason (e.g., one of the space names is points
unknown or the transformation requires the inversion of a noninvertable transformation), NULL is returned.

EXAMPLE

 four_points[4];RtPoint
 ("current," "lamptop," 4, four_points);RiTransformPoints

Transformation stack

Transformations can be saved and restored recursively. Note that pushing and popping the attributes also pushes and pops the current transformation.

 ()RiTransformBegin
 ()RiTransformEnd

Push and pop the current transformation. Pushing and popping must be properly nested with respect to the various begin-end constructs.

RIB BINDING

 -TransformBegin
 -TransformEnd

EXAMPLE

 ();RiTransformBegin

Motion

Some rendering programs are capable of performing temporal anti-aliasing and motion blur. Motion blur is specified through and moving transformations m
. Appearance parameters, such as color, opacity, and shader variables can also be changed during a frame. To specify objects oving geometric primitives

that vary over time, several copies of the same object are created, each with different parameters at different times within a frame. The times that actually
contribute to the motion blur are set with the command. Parameter values change linearly over the intervals between knots. There is no limit to RiShutter
the number of time values associated with a motion-blurred primitive, although two is usually sufficient.

Rigid body motions and other transformation-based movements are modeled using moving coordinate systems. Moving coordinate systems are created by
giving a sequence of transformations at different times and can be concatenated and nested hierarchically. All output primitives are defined in the current
object coordinate system and, if that coordinate system is moving, the primitives will also be moving. The extreme case is when the camera is moving,
since then all objects in the scene appear to be moving. Moving lights also are handled by placing them in a moving coordinate system. Deforming
geometric primitives can also be modeled by giving their parameters at different times.

Moving geometry is created by bracketing the definitions at different times between and calls.RiMotionBegin RiMotionEnd

 (n, t0, t1,..., tnminus1)RiMotionBegin RtInt RtFloat RtFloat RtFloat
 ()RiMotionEnd

RiMotionBegin starts the definition of a moving primitive. is the number of time steps associated with this moving primitive. The times should be in n
increasing order. Only one type of RenderMan Interface command can be executed within this sequence and only numerical values may be interpolated.

RiMotionEnd terminates the definition of the moving primitive.

RIB BINDING

 [t0 t1... tn-1]MotionBegin
 -MotionEnd

For example, assume the following list of commands creates a static translated sphere:

 Kd = 0.8;RtFloat
 ("leather", "Kd", ()&Kd, RI_NULL);RiSurface RtPointer
 (1., 2., 3.);RiTranslate
 (1., -1., 1., 360., RI_NULL);RiSphere

To create a moving, deforming sphere with changing surface qualities, the following might be used:

 Kd[] = { 0.8, 0.7 };RtFloat
 (2, 0., 1.);RiMotionBegin
 ("leather", "Kd", ()Kd, RI_NULL);RiSurface RtPointer
 ("leather", "Kd", ()(Kd+1), RI_NULL);RiSurface RtPointer
 ();RiMotionEnd
 (2, 0., 1.);RiMotionBegin
 (1., 2., 3.);RiTranslate
 (2., 3., 4.);RiTranslate
 ();RiMotionEnd
 (2, 0., 1.);RiMotionBegin
 (1., -1., 1., 360., RI_NULL);RiSphere
 (2., -2., 2., 360., RI_NULL);RiSphere
 ();RiMotionEnd

The table below shows which commands may be specified inside a block. If the capability is not supported by a RiMotionBegin-RiMotionEnd Motion Blur
particular implementation, only the transformations, geometry, and shading parameters from t0 are used to render each moving object.

Moving Commands

Transformations Geometry Shading

RiTransform
RiConcatTransform

RiPerspective
 RiTranslate

 RiRotate
 RiScale

RiSkew

RiProjection
RiDisplacement

RiBound
RiDetail

RiPolygon
 RiGeneralPolygon
 RiPointsPolygons

 RiPointsGeneralPolygons

 RiPatch
 RiPatchMesh

 RiNuPatch
 RiSphere

 RiCone
 RiCylinder

 RiHyperboloid
 RiParaboloid

 RiDisk
 RiTorus
 RiPoints
 RiCurves

 RiSubdivisionMesh
RiBlobby

RiColor
RiOpacity

RiLightSource
RiAreaLightSource

RiSurface
 RiInterior
 RiExterior

RiAtmosphere

Resources

Resources generally encapsulate some part of the graphics state, or other information specific to the renderer such as a in-memory RIB archive.
Resources are always named and have a type associated with them. Resources are unique in that they can exist outside the rest of the graphics state,
and are thus not subject to standard scoping rules; instead, they have their own scoping block mechanism. An example of a resource is the ability to save
the entirety of the current attribute state, and restore it at a future point, independent of the current attribute stack.

 (handle, type, ...)RiResource RtToken RtToken

Creates or operates on a named resource (with name) of a particular type. The allowed operations for the resource are specified in the parameter handle
list, and are specific to the type of resource being manipulated.

A named resource type which is recommended for all implementations of the RenderMan Interface is the encapsulation of the entirety of the current
attribute state. This resource is selected by specifying "attributes" for the . In this case, the parameter list must contain at least the parameter "string type
operation" which takes a value of "save" (in order to create the saved attribute state with the given) or "restore" (to restore a previously saved handle
attribute state). Furthermore, when restoring the state, a further optional parameter is accepted: "string subset", which specifies the subset of the saved
attribute state to restore. (i.e. "shading", "transform", or "all").

RIB BINDING

 handle typeResource

EXAMPLE

http://www-seattle/liveDocs/RenderMan_21/graphicsState.html#ritransform
http://www-seattle/liveDocs/RenderMan_21/graphicsState.html#riconcattransform
http://www-seattle/liveDocs/RenderMan_21/graphicsState.html#riperspective
http://www-seattle/liveDocs/RenderMan_21/graphicsState.html#ritranslate
http://www-seattle/liveDocs/RenderMan_21/graphicsState.html#rirotate
http://www-seattle/liveDocs/RenderMan_21/graphicsState.html#riscale
http://www-seattle/liveDocs/RenderMan_21/graphicsState.html#riskew
http://www-seattle/liveDocs/RenderMan_21/risOptions.html#camera
http://www-seattle/liveDocs/RenderMan_21/risrisAttributes.html#ridisplacement
http://www-seattle/liveDocs/RenderMan_21/risAttributes.html#ribound
http://www-seattle/liveDocs/RenderMan_21/risAttributes.html#ridetail
http://www-seattle/liveDocs/RenderMan_21/geometricPrimitives.html#ripolygon
http://www-seattle/liveDocs/RenderMan_21/geometricPrimitives.html#rigeneralpolygon
http://www-seattle/liveDocs/RenderMan_21/geometricPrimitives.html#ripointspolygons
http://www-seattle/liveDocs/RenderMan_21/geometricPrimitives.html#ripointsgeneralpolygons
http://www-seattle/liveDocs/RenderMan_21/geometricPrimitives.html#ripatch
http://www-seattle/liveDocs/RenderMan_21/geometricPrimitives.html#ripatchmesh
http://www-seattle/liveDocs/RenderMan_21/geometricPrimitives.html#rinupatch
http://www-seattle/liveDocs/RenderMan_21/geometricPrimitives.html#risphere
http://www-seattle/liveDocs/RenderMan_21/geometricPrimitives.html#ricone
http://www-seattle/liveDocs/RenderMan_21/geometricPrimitives.html#ricylinder
http://www-seattle/liveDocs/RenderMan_21/geometricPrimitives.html#rihyperboloid
http://www-seattle/liveDocs/RenderMan_21/geometricPrimitives.html#riparaboloid
http://www-seattle/liveDocs/RenderMan_21/geometricPrimitives.html#ridisk
http://www-seattle/liveDocs/RenderMan_21/geometricPrimitives.html#ritorus
http://www-seattle/liveDocs/RenderMan_21/geometricPrimitives.html#ripoints
http://www-seattle/liveDocs/RenderMan_21/geometricPrimitives.html#ricurves
http://www-seattle/liveDocs/RenderMan_21/geometricPrimitives.html#risubdivisionmesh
http://www-seattle/liveDocs/RenderMan_21/geometricPrimitives.html#riblobby
http://www-seattle/liveDocs/RenderMan_21/risAttributes.html#ricolor
http://www-seattle/liveDocs/RenderMan_21/risAttributes.html#riopacity
http://www-seattle/liveDocs/RenderMan_21/risAttributes.html#rilightsource
http://www-seattle/liveDocs/RenderMan_21/risAttributes.html#riarealightsource
http://www-seattle/liveDocs/RenderMan_21/risAttributes.html#risurface
http://www-seattle/liveDocs/RenderMan_21/risAttributes.html#riinterior
http://www-seattle/liveDocs/RenderMan_21/risAttributes.html#riexterior
http://www-seattle/liveDocs/RenderMan_21/risAttributes.html#riatmosphere

Color 0 1 0
Surface "marble"

 "greenmarble" "attributes" "string operation" "save"Resource
Sphere 1 0 1 360
Color 1 0 0
Surface "plastic"
Cone 0.5 0.5 360

 "greenmarble" "attributes" "string operation" "restore" "string subset" "shading"Resource
Cylinder 0.5 0 1 360

In this example, a resource named "greenmarble" of type "attributes" has been created with the "save" operation. A green marble sphere is then
immediately defined. The attribute state is then altered and a red plastic cone is created. Finally, the previously saved resource "greenmarble" is restored
with the "restore" operation. Depending on the implementation, this restores the shading part of the attribute state such that the subsequent cylinder is
green and uses a marble shader, instead of being red and plastic.

The following table describes which parts of the graphics state are manipulated by "string subset". In addition, PRMan allows for multiple subsets to be
combined using comma separated lists. Hence, restoring the "shading,geometry" subset will be the same as restoring both
the "shading" and "geometry" subsets.

Subset Name Attributes Restored by Subset

shading
All shaders (, , , ,)RiSurface RiDisplacement RiAtmostphere RiInterior RiExterior
RiColor
RiGeometricApproximation
RiMatte
RiOpacity
RiScopedCoordinateSystem (see note below)
RiTextureCoordinates
Attribute "derivatives" "centered"
Attribute "displacementbound"
Attribute "irradiance"
Attribute "grouping"
Attribute "shade"
Attribute "trace"
Attribute "visibility"
Attribute "user" (see note below)

transform Transformation calls (, , etc.)RiConcatTransform RiTranslate

geometrymodification
RiDetail
RiDetailRange
RiOrientation
RiReverseOrientation
RiSides
Attribute "cull"
Attribute "sides"
Attribute "stitch"
Attribute "dice"

geometrydefinition
RiBasis
RiSolidBegin,
RiSolidEnd
RiTrimCurve
Attribute "identifier"
Attribute "trim"

hiding Attribute "hide"

Note

PRMan currently has limitations related to user attributes and scoped coordinate systems: user attributes or coordinate
systems whose values are overridden while in an scope may not save the correct value (the AttributeBegin-AttributeEnd
last value set in the current scope will be restored). In other words:

http://www-seattle/liveDocs/RenderMan_21/risAttributes.html#risurface
http://www-seattle/liveDocs/RenderMan_21/risrisAttributes.html#ridisplacement
http://www-seattle/liveDocs/RenderMan_21/risOptions.html#displays
http://www-seattle/liveDocs/RenderMan_21/risAttributes.html#riinterior
http://www-seattle/liveDocs/RenderMan_21/risAttributes.html#riexterior
http://www-seattle/liveDocs/RenderMan_21/risAttributes.html#ricolor
http://www-seattle/liveDocs/RenderMan_21/risAttributes.html#rigeometricapproximation
http://www-seattle/liveDocs/RenderMan_21/risAttributes.html#rimatte
http://www-seattle/liveDocs/RenderMan_21/risAttributes.html#riopacity
http://www-seattle/liveDocs/RenderMan_21/graphicsState.html#riscopedcoordinatesystem
http://www-seattle/liveDocs/RenderMan_21/risAttributes.html#ritexturecoordinates
http://www-seattle/liveDocs/RenderMan_21/risAttributes.html#derivatives_centered
http://www-seattle/liveDocs/RenderMan_21/risAttributes.html#displacementbound
http://www-seattle/liveDocs/RenderMan_21/risAttributes.html#irradiance
http://www-seattle/liveDocs/RenderMan_21/risAttributes.html#grouping
http://www-seattle/liveDocs/RenderMan_21/risAttributes.html#shade_strategy
http://www-seattle/liveDocs/RenderMan_21/risAttributes.html#trace
http://www-seattle/liveDocs/RenderMan_21/risAttributes.html#visibility
http://www-seattle/liveDocs/RenderMan_21/risAttributes.html#user_attribute
http://www-seattle/liveDocs/RenderMan_21/graphicsState.html#riconcattransform
http://www-seattle/liveDocs/RenderMan_21/graphicsState.html#ritranslate
http://www-seattle/liveDocs/RenderMan_21/risAttributes.html#ridetail
http://www-seattle/liveDocs/RenderMan_21/risAttributes.html#ridetailrange
http://www-seattle/liveDocs/RenderMan_21/risAttributes.html#riorientation
http://www-seattle/liveDocs/RenderMan_21/risAttributes.html#rireverseorientation
http://www-seattle/liveDocs/RenderMan_21/risAttributes.html#risides
http://www-seattle/liveDocs/RenderMan_21/risAttributes.html#cull
http://www-seattle/liveDocs/RenderMan_21/risAttributes.html#twoshade
http://www-seattle/liveDocs/RenderMan_21/risAttributes.html#internal-crack-elimination
http://www-seattle/liveDocs/RenderMan_21/risAttributes.html#dice
http://www-seattle/liveDocs/RenderMan_21/geometricPrimitives.html#ribasis
http://www-seattle/liveDocs/RenderMan_21/geometricPrimitives.html#risolidbegin
http://www-seattle/liveDocs/RenderMan_21/geometricPrimitives.html#risolidend
http://www-seattle/liveDocs/RenderMan_21/geometricPrimitives.html#ritrimcurve
http://www-seattle/liveDocs/RenderMan_21/risAttributes.html#identifier_name
http://www-seattle/liveDocs/RenderMan_21/risAttributes.html#trimcurve_sense
http://www-seattle/liveDocs/RenderMan_21/risAttributes.html#hide

AttributeBegin
 Attribute "user" "string mytex" ["grass.tex"]
 Resource "grass" "attributes" "string operation" "save"
 Attribute "user" "string mytex" ["flowers.tex"]
AttributeEnd
Resource "flowers" "attributes" "string operation" "save"
Resource "grass" "attributes" "string operation" "restore" "string subset" "shading"

When the named attribute state "grass" is restored, the attribute user:mytex will contain flowers.tex, not grass.tex. This
limitation may be addressed in a future release.

Resources can be explicitly saved and restored with the following commands:

 ()RiResourceBegin
 ()RiResourceEnd

Push and pop the current set of resources. Resources defined (named) in the current ResourceBegin scope will cease to exist at ResourceEnd. If a
resource is defined outside any ResourceBegin/End scope, that resource is deemed to be global and will persist indefinitely, or at least until FrameEnd
depending on the nature of the resource. Otherwise, pushing and popping of resources must be properly nested with respect to various Begin-End
constructs.

RIB BINDING

 -ResourceBegin
 -ResourceEnd

EXAMPLE

Color 1 0 0
Surface "plastic"
Resource "foo" "attributes" "string operation" "save"
ResourceBegin
 Color 0 1 0
 Surface "marble"
 Resource "foo" "attributes" "string operation" "save"
ResourceEnd

In this example, two resources, both named "foo" and of type "attributes", have been created with the "save"operation. The first resource is global and
(depending on the implementation) stores attribute state: namely, that the color is red and the surface is plastic.

The second resource's lifetime is scoped by the ResourceBegin and ResourceEnd calls and stores attribute state: green color and marble surface. Hence
due to the scoping, references to "foo" within the ResourceBegin/End block will resolve against the second resource (green, marble). After
the ResourceEnd, the second resource has been destroyed and the first resource is again in scope, and hence references to "foo" will resolve against the
first resource (red, plastic).

Conditional Evaluation

RiIfBegin (RtToken expression)
RiElseIf (RtToken expression)
RiElse
RiIfEnd

These calls form the basis of a simple conditional evaluation mechanism that allow RIB archives to be constructed with a degree of context sensitivity.

Normally the elements in a RIB archive are selected by the application that is authoring the archive. Complex logic and data manipulations are properly the
domain of a true programming language with RenderMan Interface binding. When RIB variations are needed in these cases, they are regenerated by the
authoring application.

However, sometimes a previously generated RIB archive is reused in a different context and it may need some internal ability to adapt to each context.
These RIB archives allow chunks of "frozen" geometry or scene state to be stored and then accessed from a higher level "driver" RIB file. The archive can
be reused from multiple places in the same frame or across multiple frames. For example, an object whose shape remains the same across many frames
might be placed in an archive, it's position and orientation might be animated by specifying a different transformation matrix in each per-frame driver file
before referencing the object's archive. This modularity has many benefits, including the potentially large savings in per-frame RIB generation time when
the archived object is very complex.

There are situations in which it is very useful to allow certain internal aspects of an archive to be altered based on the current external driver file state or
parameters. For example, the archive might select entirely different surface shaders depending on which "rendering pass" is active. The driver file might
define the current pass with a user Attribute setting:

Attribute "user" "string renderpass" ["shadow"]
Procedural "DelayedReadArchive" ["archive.rib"] [0 1 0 1 0 1]

Then, the archive can use the conditional evaluation calls to decide which shaders to apply:

AttributeBegin
IfBegin "$user:renderpass == 'shadow'"
 Surface "null"
ElseIf "$user:renderpass == 'beauty'"
 Surface "rmarble"
Else
 Surface "plastic"
IfEnd
Sphere 1.0 -1.0 1.0 360.0
AttributeEnd

Similarly, a single archive might be used by several versions of the renderer, such as during testing or when an asset is shared between productions. The
"$renderer" namespace provides a "version" object with several useful values: major, minor, and build.

IfBegin "$renderer:version.major >= 21"
 Bxdf "simple/PxrHair" "hair" "color diffuseRootColor" [1.0 0.5 0.25]
Else
 Color [1.0 0.5 0.25]
 Surface "plastic"
IfEnd

Expression syntax:

The conditional expressions evaluated by IfBegin and ElseIf are similar to those found in C and many scripting languages. The entire expression evalutes
to a numeric result, and if the result is non-zero then the associated branch of the block becomes active. The expression operators work on values If-Else
that are string or numeric literals, or renderer state variables. A typical set of arithmetic, relational, and logical operators are provided, plus a few additional
functions:

State Variables look up Attribute and Option values $name

Arithmetic take numbers, return numbers + - * / **

Bit Mask bit-wise integer And, Or, Xor & | ^

Relational take numbers or strings;
return 1 if the relation holds, 0 if it doesn't;
strings are compared using strcmp()

== != < <= >= >

String Match glob-style matching, the pattern can contain '*' and '?' wildcards. string =~ pattern

Logical treats non-zero as true, zero as false;
return 1 if the logical assertion holds,
0 if it doesn't

&& || !

Grouping (subexpression)
'string literal'

Variable Existence returns 1 if the state variable exists,
0 if it doesn't

defined(name)

Concatenation combines strings concat(string , string)

Computed Variable Names look up name given by subexpression $(subexpression)

State variable names are looked up by searching the Attribute stack, then the Options, then RendererInfo. The search can be restricted by prepending an
additional "namespace" qualifier:

$Frame --> finds the Option (current frame number)
$limits:eyesplits --> finds the Attribute
$Attribute:limits:eyesplits --> also finds the Attribute
$Option:limits:eyesplits --> finds the Option

Traditional static archives will continue to be the right choice in most situations. With proper archive "factoring" the creator of the driver file can select
appropriate archives as needed and hardcode their names in the driver. Conditional evaluation becomes useful when factoring isn't possible or when it can
help reduce the number of required archives

RIB BINDING

 IfBegin expression
 ElseIf expression
 Else
 IfEnd

EXAMPLE

Using Computed Variable Names (i.e. $(subexpression)) in a conditional RIB statement. The use of computed variable names is similar to evaluating
expressions created from the contents of other variables (like performing 'eval' or 'expr' from some shells).

prman x.rib main.rib ---> renders a yellow matte sphere

prman y.rib main.rib ---> renders a magenta plastic sphere

x.rib

Attribute "user" "string abc" ["x"]

y.rib

Attribute "user" "string abc" ["y"]

main.rib

 ##RenderMan RIB
 version 3.03
 FrameBegin 1
 Format 128 128 1
 Display "/tmp/t.tif" "tiff" "rgba"
 Projection "perspective" "fov" [45]
 WorldBegin
 LightSource "distantlight" 1 "from" [1 1 -1]

 Attribute "user" "float x1" [11]
 Attribute "user" "float x2" [12]
 Attribute "user" "float y1" [101]
 Attribute "user" "float y2" [102]

 AttributeBegin
 Attribute "identifier" "name" ["mysphere"]
 Translate 0 0 2.75
 IfBegin "$($abc$Frame) > 100"
 Color 1 0 1
 Surface "plastic"
 Else
 Color 1 1 0
 Surface "matte"
 IfEnd
 Sphere 1.0 -1.0 1.0 360.0
 AttributeEnd
 WorldEnd
 FrameEnd

	Graphics State

