
Procedurals in Maya
RenderMan procedural primitives are user provided subroutines that can be called upon to generate geometry during the process of rendering. The
advantage of procedurals over native Maya geometry is that they can generate complex geometry very efficiently. Procedurals can create incredible
geometric complexity from a small number of inputs, and we can delay handling it until the render time. This may make it possible to render much more
complex scenes than would be possible with standard Maya representation. Procedurals can also be thought of as units of memory management. The
renderer can elect to unload all concrete geometry associated with a procedural knowing that the geometry can be regenerated should there be further
need for it.

RenderManProcedural (RiProcedural)

RenderMan for Maya ships with the generic procedural node type of RenderManProcedural that can be used to load a RiProcedural subroutine (not
RiProcedural2). This is meant to be quick and easy without requiring installation or customization. For flexibility, a Pre Shape Mel attribute can be used to
set the string data parameter during scene translation.

Custom Nodetype Extensions (RiProcedural and RiProcedural2)

Alternatively, users can specify custom mappings of arbitrary Maya nodes to DSO procedurals using .args file parameter lists. This is meant to provide
seamless RenderMan integration with exiting Maya plug-ins.

Environment Configuration

RfM can be made aware of custom .args file procedurals by placing a config/mayaTranslation.json extension file under (22.2), RFM_PLUGINS_PATH RFM_S
 or . Example site configuration:ITE_PATH RFM_SHOW_PATH

setenv RFM_SITE_PATH /tmp/simple_procedural

RFM_PLUGINS_PATH is specially designed for procedurals and takes a list of paths:

setenv RFM_PLUGINS_PATH "/tools/plugins/myHairPlugin:/tools/plugins/myCrowdPlugin:/tools/plugins/mySpherePlugin"

Each path should contain the procedural as well as a directory that may contain the usual files: , , , config rfm.json extensions.json menu.json she
, etc.lf.json

Nodetype Mapping

The directory should contain config/mayaTranslation.json which declares translator mappings. In this case, we map the custom Maya nodetype
"MayaSphere" to the RenderMan procedural "SphereProc". Example config/mayaTranslation.json:

{
 "nodeTable": [
 "MayaSphere", "SphereProc"
]
}

RfM and RenderMan will search RFM_SITE_PATH and RFM_SHOW_PATH for procedurals DSOs and Args of the specified name, i.e. SphereProc.so
and SphereProc.args.

Procedural Args File

The args file should set the plug-in typeTag to "procedural" for RiProcedural or "procedural2" for RiProcedural2. A special "string __dsoname" parameter
must also be set to the name of the DSO. Other procedural parameter can be declared similar to shading parameters. The "match" feature can be used to
translate Maya attributes with differing parameters name, i.e.:

The paths in will be added to render-time search paths, including the following sub paths:RFM_PLUGINS_PATH

 Option "searchpath"

"string rixplugin" ["...:/tools/plugins/mySpherePlugin:/tools/plugins/mySpherePlugin/nodes:/tools/plugins/mySpherePlugin/nodes

 /args"]

"string shader" ["...:/tools/plugins/mySpherePlugin:/tools/plugins/mySpherePlugin/nodes:/tools/plugins/mySpherePlugin/nodes

 /osl"]

 "string texture" ["...:/tools/plugins/mySpherePlugin"]

"string procedural" ["...:/tools/plugins/mySpherePlugin"]

<args format="1.0">
 <page name="Parameters" open="True">
 <param name="__dsoname" type="string" default="SphereProc.so" match="-none-"/>
 <param name="radius" type="float" default="1"/>
 <param name="material" match="rman_material" type="string" default=""/>
 </page>
 <typeTag>
 <tag value="procedural2"/>
 </typeTag>
 <rfmdata
 classification="RenderMan/procedural"/>
</args>

Example Download

An example Maya plug-in with RenderMan procedural integration: simple_procedural.zip

Late Material Binding

Materials can be late bound using the __materialid mechanism described here: . In Maya, the "string __materialid" parameter Ri Material Binding
corresponds to the Maya shading group name. Users may need to enable "Output All Shaders" under the Advanced section of render settings to output all
materials up front.

setAttr "rmanGlobals.outputAllShaders" 1;

#
https://rmanwiki.pixar.com/display/REN/Ri+Material+Binding

	Procedurals in Maya

