
1.
2.
3.

Compiling Plugins & Linking Applications

RenderMan Plugins
Applications and Bridge Tools

Dynamic Linking
Dynamic Loading RenderMan

RenderMan Plugins

Compiling and using a new plugin requires three steps:

Compiling the C++ file that contains your plugin functions.
Compiling the shader that uses your functions.
Rendering a frame.

Compiling your C++ file is straightforward: just use the standard C++ compiler to generate an object (.o/.obj) file, then generate a shared object (.so/.dll)
file from the object file. Remember that, though using C++, you must use C style linkage. You also must ensure that your C++ compiler and libraries are
compatible with the compiler and runtime libraries used by PRMan (gcc for Linux and OS-X and Microsoft Visual C for Windows).

Here are example commands for building a plugin on several architectures:

Linux

g++ -fPIC -I$RMANTREE/include -c myfunc.cpp -o myfunc.o
g++ -shared myfunc.o -o myfunc.so

Mac OS-X

clang++ -std=c++11 -I$RMANTREE/include -c myfunc.cpp -o myfunc.o
clang++ -bundle -undefined dynamic_lookup myfunc.o -o myfunc.so

(On 64-bit OS-X: add -m64 after each g++.)

Windows

cl -nologo -MD -EHsc -I"%RMANTREE%\include" -c myfunc.cpp
link -nologo -DLL -out:myfunc.dll myfunc.obj "%RMANTREE%\lib\libprman.lib"

The resulting file myfunc.so or myfunc.dll is the plugin that implements your new function. It is not important that the filename matches the name of the
function.

Applications and Bridge Tools

For applications, the libprman library will be loading into the the application. Of course, the application will need to be told where to find the library. This can
be done at link-time by linking to libprman or at runtime using the libloadprman.a .the library static library

Dynamic Linking

In this case, the libprman LD_LIBRARY_PATH, rpath, etc.). When using the library is linked to the application in some platform dependent way (i.e.
RenderMan API, a RixContext pointer may be obtained by calling RixGetContext.

Here are example commands for building a plugin on several architectures:

Linux

Plugin authors can confirm the compiler/library versions for the intended version of PRMan by running `prman -version`.

On Unix-based platforms, plugins are linked such that symbols that resolve to entry points in libprman.so libprman.dylib or are left unresolved.
libprman.soNote that on Linux the use of -fPIC is important for code that will be used as a plugin and that there is no explicit linkage of , even if

deeptexturethe plugin makes reference to application interfaces, like . On OS X, the linker must be explicitly told that the unresolved symbols
libprman.libwill be resolved at runtime. On Windows, the must always be referenced to resolve the unresolved symbols in the plugin.

g++ -c -fPIC -I$RMANTREE/include myapp.cpp -o myapp.o
g++ myapp.o -L$RMANTREE/lib -lprman -o myapp

Mac OS-X

clang++ -std=c++11 -I$RMANTREE/include -c myfunc.cpp -o myapp.o
clang++ -bundle -undefined dynamic_lookup myfunc.o -o myfunc.so

Windows

cl -nologo -MD -EHsc -I"%RMANTREE%\include" -c myfunc.cpp
link -nologo -DLL -out:myfunc.dll myfunc.obj "%RMANTREE%\lib\libprman.lib"

Dynamic Loading RenderMan

In this case, the libprman loaded by the application at runtime from the RMANTREE environment variable. This is made possible by directly library is
linking the libloadprman.a the static library into your application. When using the RenderMan API, a RixContext pointer may be obtained by static library
calling RixGetContextViaRMANTREE.

Here are example commands for building a plugin on several architectures:

Linux

g++ -c -fPIC -I$RMANTREE/include myapp.cpp -o myapp.o
g++ myapp.o $RMANTREE/lib/libloadprman.a -o myapp

Mac OS-X

clang++ -std=c++11 -c -I$RMANTREE/include myapp.cpp -o myapp.o
clang++ myapp.o $RMANTREE/lib/libloadprman.a -o myapp

Windows

cl -nologo -MD -EHsc -I"%RMANTREE%\include" -c myapp.cpp
link -nologo -out:myapp.exe myapp.obj "%RMANTREE%\lib\libprman.lib"

	Compiling Plugins & Linking Applications

