Writing Integrators

® Introduction
® |mplementing the RixIntegrator Interface
® |ntegration Context
© Primary Rays
© Ray Tracing
® [ntegration
© Direct Lighting
® Generating light samples, evaluating bxdf response
" Generating bxdf samples, evaluating light contribution
© Writing To The Display
Random Number Generation
© Indirect Rays
® Generating Bxdf Samples
® Creating Indirect Rays
® Trace Indirect Rays
© Light Transport
© Ray Differentials & Ray Spreads
® Camera Ray Spread
= Reflected Ray Spread
® Ray Property Queries

o]

Introduction

This documentation is intended to instruct developers in the authoring of custom integrators. Developers should also consult the Ri xI nt egr at or . h head
er file for complete details.

An integrator plugin is used to model the integration of camera rays. These plugins are responsible for taking primary camera rays as input from the
renderer and performing some work with these rays. Usually this work involves tracing the rays through the scene, computing the lighting on the hit points,
and sending integrated results to the display services.

Implementing the RixIntegrator Interface

Ri xI nt egr at or . h describes the interface that integrators must implement. Ri x| nt egr at or is a subclass of Ri xShadi ngPl ugi n, and therefore
shares the same initialization, synchronization, and parameter table logic as other shading plugins. Integrators do not support lightweight instances, and
therefore Cr eat el nst anceDat a() should not be overridden as any created instance data will not be ever returned to the Ri x| nt egr at or . Therefore to
start developing your own integrator, you can #i ncl ude "Ri x| nt egr at or. h" and make sure your integrator class implements the required methods
inherited from the Ri xShadi ngPl ugi n interface: I nit (), Fi nal i ze(), Synchroni ze(), and Get Par anirabl e() .

The RI X_| NTEGRATORCREATE() macro defines the Cr eat eRi xI nt egr at or () method, which is called by the renderer to create an instance of the
integrator plugin. Generally, the implementation of this method should simply return a new allocated copy of your integrator class. Similarly, the Rl X_I NTE
GRATORDESTROY() macro defines the Dest r oyRi xI nt egr at or () method called by the renderer to delete an instance of the integrator plugin; a
typical implementation of this method is to del et e the passed in integrator pointer:

RI X_| NTEGRATORCREATE

{
return new Myl ntegrator();
}
RI X_| NTEGRATORDESTROY
{
delete ((MyIntegrator*)integrator);
}

Integration Context
To facilitate the job of an integrator plugin, the renderer provides an integration context of type Ri x| nt egr at or Cont ext which contains information

about the primary rays, pointers to implementations of display services and lighting services, and routines to trace rays against the renderer's geometric
database.

Primary Rays
Information about the primary camera rays are supplied via the numRays, numAct i veRays, and pri mar yRays fields of the Ri x| nt egr at or Cont ext .

The Ri xShadi ngCont ext member i nt * i nt egr at or Ct x| ndex links a given shading point with it associated primary ray: the shading point with index i
is associated with the ray pri mar yRays[i nt egrat or Ct xI ndex[i]].

Ray Tracing

Ray tracing services are provided by the renderer via the Get Near est Hi t s() and Get Tr ansmi ssi on() methods provided on the Ri xI nt egr at or Con
text.

http://rmanwiki-test.pixar.com/display/REN22/RixShadingPlugin
http://rmanwiki-test.pixar.com/display/REN22/RixShadingPlugin#RixShadingPlugin-initialization
http://rmanwiki-test.pixar.com/display/REN22/RixShadingPlugin#RixShadingPlugin-synchronization
http://rmanwiki-test.pixar.com/display/REN22/RixShadingPlugin#RixShadingPlugin-getparamtable
https://rmanwiki.pixar.com/display/REN22/RixShadingPlugin#RixShadingPlugin-initialization
https://rmanwiki.pixar.com/display/REN22/RixShadingPlugin#RixShadingPlugin-initialization
https://rmanwiki.pixar.com/display/REN22/RixShadingPlugin#RixShadingPlugin-synchronization
https://rmanwiki.pixar.com/display/REN22/RixShadingPlugin#RixShadingPlugin-getparamtable
https://rmanwiki.pixar.com/display/REN22/Display+Services
#

Get Near est Hi t s() is invoked by an integrator to send rays against the geometric database and return the list of nearest ray hits. Two versions of this
routine are provided.

® The first version returns its ray hits in the form of a list of Ri xShadi ngCont ext . These shading contexts represent a collection of points which
have had their associated Bxdfs fully executed and set up for sample evaluation and generation. Since a Bxdf evaluation may trigger an upstream
evaluation of all input patterns, this call is considered to be very expensive as it invokes full shading.

® The second version of this call returns its ray hits in the form of a list of Rt Hi t Geon®et r y. No shading contexts are set up in this routine, and only
information about the geometric locale is returned. This version of the call is preferred if no shading needs to be performed, such as in the case of
an occlusion-only integrator.

All the shading contexts that are returned by Get Near est Hi t s() must be explicitly released back to the renderer with the Rel easeShadi ngCont ext s()
method. However:

® shading contexts that are provided by the renderer to the integrator (through Ri xI ntegrator::Integrate())
® shading contexts returned to the renderer (through Ri xI nt egrator: : | nt egr at eRays()

do not need to be released. The renderer will take care of this when appropriate.

Shading contexts associated with a bxdf closure can use a consequent amount of memory, so it is recommended to release them as soon as they are not
needed anymore. This is usually possible after the integrator is done evaluating or generating samples for these bxdfs.

Get Transmi ttance() can be invoked by an integrator to compute the transmittance between two points in space. This is of use for bidirectional path
tracing applications where the transmittance between vertex connections needs to be computed. It may also be used for computing shadow rays if the lighti
ng services cannot be used for this purpose for some reason.

Both methods above need to be provided with an array of Rt Ray Geonet r y that have been properly initialized.

Integration

The | nt egr at eRays() method is the primary entry point for this class invoked by the renderer. The implementation of this routine is expected to fire the
list of active primary rays delivered via the Ri x| nt egr at or Cont ext & i ct x parameter. This method has output parameters: the nunShadi ngCt xs and
shadi ngCt xs parameters are expected to be filled in with a list of primary shading contexts that are associated with the firing of the active primary rays.
These primary shading contexts should not be released by the integrator.

1 Animplementation of | nt egr at eRays() may choose to ignore the camera rays supplied in the Ri x| nt egr at or Cont ext entirely, and shoot
an entirely different set of rays. If it chooses to do so, it should be extremely careful about splatting with the display services, as those routines
are set up to be indexed by the i nt egr at or Ct x| ndex field of the original primary rays.

The default implementation supplied for | nt egr at eRays() simply calls Ri x| nt egr at or Cont ext : : Get Near est Hi t s to trace the primary rays, and
passes the associated shading context results to | nt egr at e() , which is the secondary entry point for this class. | nt egr at e() is never directly invoked
by the renderer; it is provided as an override convenience for implementors that are content with the default behavior of | nt egr at eRays. Following a call
to I ntegrateRays() (orl ntegrate()), integrators are expected to provide results to the renderer via the display services.

The type of results depends on the integrator. Most integrators will at least trace camera rays and generate results that depend on the scene geometry, but
this is not mandatory. Non-physically-based integrators may generate results that do not depend on object materials or lights (e.g. Pxr Vi sual i zer),
while physically-based integrators will usually simulate light transport, taking into account materials and light properties.

A physically-based integrator is expected to compute the amount of light coming from the camera ray hit toward the camera ray origin. This usually
involves:

" Tracing camera rays provided to | nt egr at eRays() (hits are returned as Ri xShadi ngCont ext objects).
= Computing direct lighting (i.e. light coming directly from light sources), which involves:

= |nitializing lighting services for a given Ri xShadi ngCont ext

" Generating light samples and evaluating the bxdf contribution for these

® Generating bxdf samples and evaluating the light contribution for these
® Computing indirect lighting (i.e. light coming from non-light sources part of the scene), which involves:

" Generating bxdf samples and tracing indirect rays for each of these

Direct Lighting

Computing direct lighting for a given batch of points (encapsulated by a Ri xShadi ngCont ext object) first requires initializing the lighting services.

https://rmanwiki.pixar.com/display/REN22/RixShadingContext
https://rmanwiki.pixar.com/display/REN22/Writing+Bxdfs
https://rmanwiki.pixar.com/display/REN22/Writing+Patterns
https://rmanwiki.pixar.com/display/REN22/Writing+Lights
https://rmanwiki.pixar.com/display/REN22/Writing+Lights
https://rmanwiki.pixar.com/display/REN22/RtRayGeometry

Ri xLi ghtingServi ces* |ightingServices = integratorContext. GetLightingServices();
Ri xBXEval uat eDonmai n eval Domai n = k_Ri xBXBot h;
Ri xLi ghti ngServi ces: : Mbde | svcMbde = Ri xLi ghtingServices: : k_I gnor eFi xedSanpl eCount ;
int fixedSanpl eCount = 0;
int indirectSanples = 1;
I'i ghti ngServi ces->Begi n(&hadi ngCont ext, & i xRNG, eval Domai n,

Ri xLi ghti ngServi ces: : k_Materi al AndLi ght Sanpl es,

| svcMode,

Ri xLi ghti ngServi ces: : Sanpl eMbde(), // defaults

&f i xedSanpl eCount ,

t ot al Dept h,

i ndi rect Sanpl es) ;

/1
/1 computeDirectlLighting(...)
/1

I'i ghtingServices->End();

Once lighting services have been initialized, it is possible to ask for light sample generation and evaluation. Note that bxdf sample generation and
evaluation is available as soon as Ri xShadi ngCont ext objects have been returned by Get Near est Hi t s() .

In a standard Multiple Importance Sampling computation, we need to

= generate bxdf samples and evaluate light contribution for each of them
= generate light samples and evaluate bxdf response for each of them

Note that because the bxdf API returns multiple-lobe results, we need to setup Ri xBXLobeWeéi ght s objects beforehand (instead of dealing with a simple R
t Col or RGB per sample). This requires setting up Rt Col or RGB buffers of appropriate size.

Generating light samples, evaluating bxdf response

/1 numli ght Sanples is the nunber of |ight sanples generated for *each* shadi ng point.
/1 Currently, this value is used for all points in the current shadi ng context.

/1 Ri xLi ghtingServices:: CGeneratelLightSanples() fills array paraneters with the first
/1 sample for all shading points first, then the second sanple, and so on...

/!l mdCdDffuse, mC Specular, mC User are arrays of RtCol orRGB buffers. Each buffer is of size
/1 nunli ght Sanpl es * nunPoints. They will store the generated Iight sanples.

Ri xBXLobeWei ghts |ight Contributions(
nunii ght Sanpl es * nunPoi nt s,
m nunPot enti al Di f f useLobes,
m_nunPot ent i al Specul ar Lobes,
m nunPot ent i al User Lobes,
m C D f fuse,
m C Specul ar,
m d User);

/1 mdiffuse, mspecular, muser are arrays of RtCol orRGB buffers. Each buffer is of size
/1 numnli ght Sanpl es * nunPoints. They will store the bxdf contribution for each |ight sanple.

Ri xBXLobeWei ght s eval uat edMat eri al Contri buti ons(
nunii ght Sanpl es * nunPoi nt s,
m nunPot enti al D f f useLobes,
m_nunPot ent i al Specul ar Lobes,
m nunPot ent i al User Lobes,
m di f fuse,
m specul ar,
m user);

/1 For additional description of the call paraneters, see RixLightingServices API.

I'i ghti ngSvc->Gener at eSanpl es(
nunii ght Sanpl es, & i xRNG, |ightGrouplds, |ightLpeTokens, directions, |ightNormals, distance,
& i ght Contributions, transm ssion, nullptr, |ightPdf,
| obesWant ed, &eval uat edMat eri al Contri buti ons, eval uatedMateri al FPdf, eval uat edvat eri al RPdf,
| obesEval uated, nullptr, throughput);

/1 W don't need to nake an explicit call to the bxdf's Eval uateSanpl es(), because the lighting
/] services have done it for us, since we provided themw th 'eval uatedMaterial Contributions'.

Generating bxdf samples, evaluating light contribution

/1 numBxdf Sanpl es is the number of bxdf sanples generated for *each* shading point.
/1 Currently, this value is used for all points in the current shadi ng context.

Ri xBXLobeWei ght s bxdf Cont ri buti ons(

nunBxdf Sanpl es* nunPoints,
m nunPot enti al Di f f useLobes,
m_nunPot ent i al Specul ar Lobes,
m nunPot ent i al User Lobes,

m di f fuse,

m specul ar,

m user);

/1 The Ri xBxdf GenerateSanple APl is single-sanple (per shading point), so when dealing with
/Il multiple bxdf sanples, we need to wap it inside a |oop.
for (int bs = 0; bs < nunBxdf Sanpl es; bs++) {

int offset = bs * nunPoints;

/1 Changing the offset of the |obe weights will wite into the | obe weights at the appropriate
Il offset for this set of bxdf sanples.
bxdf Contri bution. Set Of f set (of fset);

bxdf . Gener at eSanpl e(k_Ri xBXDi r ect Li ghti ng, | obesWanted, &ri xRNG
| obeSanpl ed + of fset, directions + offset,
bxdf Contri butions, material FPdf + of fset,
materi al RPdf + of fset, nullptr);

for (int i = 0; i < nunPoints; i++) distances[offset + i] = 1e20f;

i ncRNGE shadi ngCont ext) ;
}

/1 Reset the offset of the | obe weights back to zero for the code bel ow.
bxdf Contri buti ons. Set Of f set (0) ;

Ri xBXLobeWei ghts |ight Contri butions(
nunBxdf Sanpl es * nunPoi nts,
m nunPot enti al Di ffuseLobes,
m nunPot ent i al Specul ar Lobes,
m nunPot ent i al User Lobes,
m C D f fuse,
m C Specul ar,
m C User);

I'i ghti ngSvc- >Eval uat eSanpl es(

/1 inputs

nunBxdf Sanpl es, & i xRNG, directions, distances, material FPdf, &bxdfContributions, |obeSanpl ed,
/1 outputs

I'i ght Grouplds, lightLpeTokens, & ightContributions, transm ssion, nullptr, |ightPdf,

nullptr, nullptr, throughput);

Writing To The Display

Once the final contribution for a given shading point has been computed, the Ri xDi spl aySer vi ces API can be used to splat this contribution to the
appropriate pixel. The integrators do not have direct access to the pixels, instead they have to provide the display services with the appropriate integrator
context index (which can be found in Ri xShadi ngCont ext : : i nt egr at or Ct x| ndex).

https://rmanwiki.pixar.com/display/REN22/Display+Services

/1 Witing to display services. 'ciChannelld is the id associated with the 'CG"' channel.
Ri xDi spl ayServi ces* di spl ayServi ces = integratorContext.CGetDi splayServices();

/'l These point to the final contribution and al pha values we want to splat to the pixels.

Rt Col or RGB* final Contributions = ...; // of size shadi ngContext->nunPts
Rt Col or RGB* final Al pha = ...; /'l of size shadi ngContext->nunPts
for (int i = 0; i < shadingContext.nunPts; i++)

{

di spl aySvc- >Spl at (ci Channel I d, shadi ngCont ext.integratorC xlndex[i], final Contributions[i]);
di spl aySvc->WiteOpacity(ci Channel I d, shadi ngContext.integratorC xlndex[i], final Al pha[i]);

Random Number Generation

You can find more about using RixRNG here. This document will help you understand how to improve sampling strategies.

Indirect Rays

In addition to compute direct lighting (as described above), physically-based integrators also need to deal with indirect lighting. This is done by casting
secondary rays from the camera hits, and performing a full lighting computing on the secondary hit points. Since this involves both computing direct and

indirect lighting, this is a recursive process.

The integrator is responsible for creating secondary rays (usually using the bxdf to do so), and trace them by calling Ri xI nt egrator::
Get Near est Hi t s() . The integrator will then use the returned Ri xShadi ngCont ext objects to compute direct and indirect lighting, similarly to what was

doneinRi xI ntegrator::Integrate().

In order to get the directions and weights of the indirect rays, integrators should use the bxdf Gener at eSanpl es() method. Tracing indirect rays can be

split into 3 steps.

Generating Bxdf Samples

Ri xBXLobeWei ghts | wW(
num ndi r ect Sanpl es * nunPoi nt s,
m nunPot enti al D f f useLobes,
m _nunPot ent i al Specul ar Lobes,
m_nunPot ent i al User Lobes,
m di f fuse,
m specul ar,
m user);

/'l Generate the indirect ray directions based on the bxdf.
for (int bs = 0; bs < num ndirect Sanpl es; bs++)

{
int offset = bs * nunPoints;
/1 Changing the offset of the |obe weights will wite into the | obe weights at the appropriate
/1 offset for this set of bxdf sanples.
I w. Set Of f set (of fset);
bxdf . Gener at eSanpl e(
k_Ri xBXI ndi r ect Li ghti ng,
m_| obesWant ed,
&rng,
m | obeSanpl ed + of fset,
mdirections + offset,
I'w,
m _FPdf + offset,
m RPdf + offset,
nul I ptr);
for (int i =0; i < npoints; i++) mdistances[offset + i] = 1e20;
}

/] Resets the offset of the | obe weights back to zero for the code bel ow.
I'w. Set Of f set (0);

https://rmanwiki.pixar.com/display/REN22/Generating+well-stratified+samples+using+RixRNG

Creating Indirect Rays

/'l Initializes rays to be traced. We nay not have to trace as nmany rays as bxdf sanples were
/'l generated, since sonme of the bxdf weights may be zero, or we nmy use russian roulette, so we keep
/1 a count of the rays to process.
int currentRay = O;
for (int bs = 0; bs < num ndirectSanpl es; bs++)
{
for (int i =0; i < nunPoints; i++)
{

int sanplelndex = bs * nunPoints + i;
int rayld = sCx.rayld[i];

Rt RayCeonetry& ray = mrays[current Ray];
ray.origin = bias(P[i], Ngn[i], mdirections[sanplelndex], biasValue);
ray. maxDi st = m di stances[sanpl el ndex] ;

ray.rayld = currentRay;

ray.originRadius = iradius[i];

ray. | obeSanpl ed = | obeSanpl ed;

ray.wavel ength = wavel ength ? Rt RayGeonetry:: EncodeWavel engt h(wavel ength[i]) : O;

/1 Compute ray spread for the |obe

ray. Set RaySpread(| obeSanpl ed, iradius[i], ispread[i], curvature[i], mFPdf[sanplelndex]);
ray.lnitOrigination(&Ctx, Ngn, i);

current Ray++;
}

}
int nunRays = currentRay;

Trace Indirect Rays

/'l Let's trace the rays
int* nunBhadi ngC xs;
Ri xShadi ngCont ext const** shadi ngCt xs;

i Ct x. Cet Near est Hi t s(nunRays, mrays, |obesWanted, false, nunShadi ngCtxs, shadi ngCtxs);

Light Transport

The final pseudo-code for computing light transport is the following:

Ri xI ntegrator::|Integrate(nunBSCtxs, sCtxs)
Conput eLi ght Transport (nunSCt xs, sCtxs)
Splat results to display services

Conput eLi ght Transport (nunSCt xs, sCtxs)
For each shadi ng context sCtx:
Conput eDi rect Li ghti ng(sCt x)
Conput el ndi r ect Li ghti ng(sCt x)

Conput eDi rect Li ghti ng(sCt x)
InitializeLightingServices()
Gener at eLi ght Sanpl es()
Eval uat eBxdf Sanpl es()
Conpute M'S wei ghts
Gener at eBxdf Sanpl es()
Eval uat eLi ght Sanpl es()
Compute M S wei ghts

Conput el ndi rect Li ghti ng(sCt x)
i Rays = Createlndirect Rays(sCtx)
(nunBCt xs, sCixs) = Tracel ndi rect Rays(i Rays)
Conput eLi ght Transport (nunSCt xs, sCtxs)

Ray Differentials & Ray Spreads
Ray differentials determine texture filter sizes and hence texture mipmap levels (and texture cache pressure in scenes with many textures).

In RIS the goal for ray differential computation was improved efficiency (over REYES), even if it's not going to give quite as accurate ray differentials in all
cases. Auxiliary ray-hit shading points are no longer created, and we only compute an isotropic ray "spread" - not a full anisotropic set of ray differentials.
The ray spread expresses how much the ray gets wider for every unit of distance it travels.

Camera Ray Spread

By default, the spread of camera rays is set up such that the radius of a camera ray is 1/4 pixel. The width of the camera ray is two times its radius, ie. 1/2
pixel. Footprints are constructed at ray hit points such that a camera ray hit footprint is 1/2 pixel wide. Equivalently, the area of a camera ray footprint is 1/4
pixel. (This is true independent of image resolution and perspective/orthographic projection.)

This choice of default camera ray spread has both a theoretical and a practical foundation. Theory: footprints that are 1/2 pixel wide match the Nyquist
sampling limit. Practice: our experiments indicate that footprints smaller than 1/2 pixel wide do not sharpen the final image, but footprints wider than that do
soften the final image. Moving to smaller than 1/2 pixel width is all pain (finer mipmap levels, more texture cache pressure), no gain (no image quality
improvement). Moving to wider than 1/2 pixel is more subjective: some people prefer the sharp look, some prefer the softer look.

Reflected Ray Spread
For reflection we compute the reflected ray spread using two approaches:

1. Ray spread based on surface curvature. The ray spread for reflection from a curved smooth surface is simple to compute accurately using Igehy's
differentiation formula:

spread’ = spread + 2*curvature*PRadi us

2. Ray spread based on roughness (pdf). The ray spread from a flat rough surface depends on roughness: the higher the roughness the lower the
pdf in a given direction; here we map the pdf to a ray spread using a heuristic mapping:

spread" = c¢ * 1/sqrt(pdf) -- with c =1/8

We set the overall ray spread to the max of these two.

This ray spread computation is done in the SetRaySpread() function (see RixIntegrator.h), which is called from the various RIS integrators. Integrator
writers can easily make their own version of SetRaySpread() using other techniques and heuristics and call that from their integrators.

Ray Property Queries

Implementors of Ri xBxdf or other shading plugins may want to query ray properties such as the ray depth or eye throughput, in order to allow for artistic
control or optimization. For instance, as an optimization a Ri xBxdf may want to skip the evaluation of a particularly expensive lobe, if the current ray
depth of the hit point is beyond some arbitrary threshold.

Since it is the integrator that is best suited for tracking such ray properties, we require that user-authored integrators that would like to participate in such
ray property queries to override the Get Pr oper t y() routine and provide the necessary information as requested by a Ri xBxdf or other shading
plugin. Integrators that do not implement ray property queries should return f al se from Get Property(), and the caller that is attempting to ask the
integrator for the property must recover gracefully by not implementing the optimization.

The definition of enum RayPr operty isin R xShadi ng. h, and matches the Get Pr operty() call from Ri xShadi ngCont ext ; in fact, the
implementation of Ri xShadi ngCont ext : : Get Property() simply turns around and calls Ri x| nt egr at or: : Get Property() . Implementors should
expect that some rays may be invalid, as signalled by a r ayl d value less than zero. It is the caller's responsibility to allocate the correct amount of storage
(i.e. the implementor of the callback in Ri xI nt egr at or does not need to allocate the memory). The expected output return values in r esul t for each
value of RayPr oper ty are as follows:

®* k_RayDept h:resul t is expectedto be anint *, and should be filled in with the current depth of the ray with matching r ay| d associated with
the current | nt egr at eRays invocation. The implementor must check for r ayl d < 0 and return a -1 depth if such a ray ID is encountered.

® k_RayRngSanpl eCt x: resul t is expected to be R xRNG : Sanpl eCt x*, and should be filled in with a copy of the appropriate Ri XxRNG :
Sanpl eCt x that ensures decent stratification results for the ray with matching r ay| d.

® k_RayThruput:result is expected to be RtColorRGB *, and should be filled in with the current thruput to the eye of the ray with matching r ay
| d associated with the current | nt egr at eRays invocation.

® k_RayVol umeScat t er Count : result is expected to be an int *, and should be filled in with the number of times a volume direct light scattering
event has occurred during the current | nt egr at eRays invocation for the given ray with matching r ay| d.

® k_RayVol umeSanpl eCount : result is expected to be an int *, and should be filled in with the number of times a volume sample was taken
during the current | nt egr at eRays invocation for the given ray with matching r ay| d.

https://graphics.stanford.edu/papers/trd/
https://graphics.stanford.edu/papers/trd/
https://rmanwiki.pixar.com/display/REN22/Writing+Bxdfs
https://rmanwiki.pixar.com/display/REN22/RixShadingContext#RixShadingContext-RayProperty

	Writing Integrators

