
Writing Projections
Introduction

This documentation is intended to instruct developers in the authoring of custom . Developers should also consult the headprojections RixProjection.h
er file for complete details. The source code for the projection plugins may be found in the PxrOrthographic and PxrPerspective plugins

 subdirectory of the PixarRenderMan-Examples package./projection/simple

A projection plugin is used to model camera and lens behavior. These plugins are responsible for taking stratified random samples as input from the
renderer and turning these into primary camera rays.

RixProjectionFactory

RixProjectionFactory is a subclass of , and therefore shares the same , , and logic RixShadingPlugin initialization synchronization parameter table
as other shading plugins. Projections do not support lightweight instances, and therefore should not be overridden as any CreateInstanceData()
created instance data will not be returned to the factory.

The renderer uses the object by invoking to obtain a . A RixProjectionFactory RixBxdfFactory::CreateProjection() RixProjection
description of various options associated with the current render are provided to the factory via the . This class RixProjectionEnvironment &env
includes information about the current format (the width and height of the image in pixels and the pixel aspect ratio), the screen window, the shutter time
values, the near and far clipping planes, and the world to camera transform. Developers are expected to use this information, along with the arguments
supplied to the plugin via the , to create an instance of that encapsulates the information necessary to RixParameterList pList RixProjection
model the desired camera and lens behavior.

RixProjectionEnvironment contains one field that can be altered: the field. This is used to indicate to the renderer the depth metric deepMetric
used for computing Z values when rendering deep output. The default value of indicates the renderer should use the distance strictly in the Z k_cameraZ
axis and can assume that all camera rays go forward in the +Z direction, while indicates that the distance should be measured along the k_rayLength
ray direction, as the rays may be go in either the -Z or +Z direction. All other fields on RixProjectionEnvironment should be considered read only.

RixProjection

Once a object is obtained, the renderer will invoke the following methods:RixProjection

RixSCDetail RixBxdf::GetProperty(ProjectionProperty property, void const** result)

Projection plugins will be queried via this method at the beginning of rendering for properties that are of interest to the renderer. The value of the
property is passed back to the renderer via the parameter. These properties are invariant during the frame (i.e. they are). The result options
current list of properties include:

k_DicingHint: The plugin should return an indicating the general strategy the renderer should use to dice enum DicingHint
geometry. takes one of three values: , , and , and should be set to the DicingHint k_Orthographic k_Perspective k_Spherical
type of camera projection that is closest to the one being implemented in the projection plugin. Not setting this property correctly means
the renderer may underdice or overdice geometry in the scene, which may impair performance or lead to visual artifacts.
k_FieldOfView: In conjunction with returning a value of or , the plugin should return k_DicingHint k_Perspective k_Spherical
a floating point value indicating the field of view of the projection in degrees. This value is used as a hint to the renderer for dicing
geometry purposes. Note that the projection plugin itself is still responsible for actually implementing a camera model that takes into
account this field of view.
k_FStop, k_FocalLength, k_FocalDistance: The plugin describes the desired depth of field (defocus) settings to the renderer.
All three properties are floats. If the projection plugin returns values for these properties, the renderer will use them as part of the
computation for the initial ray directions supplied to the projection plugin.

As all of these properties are invariant during the frame, Projection plugins should return for any supported properties, k_RixSCUniform
otherwise they should return .k_RixSCInvalidDetail

void RixBxdf::Project(RixProjectionContext &pCtx)

The method is the primary entry point for the plugin. The plugin is primarily responsible for taking the input (screen and lens Project
samples) and mapping these to the output (camera rays and tint). Both the input and output are encapsulated in the RixProjectionContext
class. The fields of this class are as follows:

int numRays: The number of rays that the projection plugin is expected to compute. All inputs and outputs on the RixProjectionCon
 class are sized to this number.text

RtPoint2 const *screen: This input contains the screen samples in screen space, which is a 2D coordinate system where X
typically has the range [-aspect, aspect] and Y has the range [-1, 1], where aspect is the screen aspect ratio. The exact values of these
coordinates are determined by the format, the screen, and crop window settings supplied to the renderer.
RtPoint2 const *lens, *aperture: The lens samples are the raw canonical samples with stratified distribution in the [0, 1), [0, 1)
unit square. The aperture samples are the lens samples warped into a distribution in the [-1, 1], [-1, 1] square by the renderer's depth of
field calculations. These calculations will be determined by the description of the as part of the scene aperture supplied to the renderer
description. If your plugin does not want to compute depth of field effects, it may choose to ignore these inputs.
float *time: The time samples are the raw stratified samples distributed in the [0, 1) range, where 0 is interpreted as the shutter
opening time and 1 is the shutter closing time. The renderer computes a distribution of these values according to the shutter opening

 supplied as part of the scene description. Projection plugins may also alter these time values (e.g., for rolling shutter or description
strobe effects), so long as they remain in the [0, 1) range.
RtRayGeometry *rays: The primary output of a projection plugin. The renderer will initialize these rays with values based on the built-
in default projection. Plugins are expected to use the inputs above, plus any information from the initial to RixParameterList pList
override the , , , and fields of the ray to model the desired camera and lens behavior. origin direction originRadius raySpread

https://rmanwiki.pixar.com/display/REN22/RixShadingPlugin
https://rmanwiki.pixar.com/display/REN22/RixShadingPlugin#RixShadingPlugin-initialization
https://rmanwiki.pixar.com/display/REN22/RixShadingPlugin#RixShadingPlugin-synchronization
https://rmanwiki.pixar.com/display/REN22/RixShadingPlugin#RixShadingPlugin-getparamtable
https://rmanwiki.pixar.com/display/REN22/RixShadingPlugin
https://rmanwiki.pixar.com/display/REN22/Bokeh
https://rmanwiki.pixar.com/display/REN22/Shutter
https://rmanwiki.pixar.com/display/REN22/Shutter

Plugins can optionally also override the and fields for any desired clipping effects. All ray properties are defined in mindist maxdist
terms of camera space, with the camera centered at the origin looking down the +Z axis. Directions should always be unit normalized or
set to zero. Rays with a zero direction vector will be culled.
RtColorRGB *tint: An optional tint which is applied to the beauty channel of shaded rays prior to pixel filtering. Defaults to white (1,
1, 1) indicating that the values should be unchanged. Projection plugins can change the tint value to create vignetting, chromatic
aberration, spectral bokeh, or other effects.

	Writing Projections

