RixShadingContext

Introduction

Fields

Builtin Variables
Primitive Variables
Parameter Evaluation
Memory Management
Tracing Rays
Transformations
Querying Ray Properties

Introduction

A Ri xShadi ngCont ext encapsulates a shading context - a description of the environment in which shading is to be performed. It is the primary domain
of operation for the shader classes Ri xBxdf, Ri xDi spl acenent, Ri xLi ght, Ri xPattern, and R xVol une, and is also of high importance to Ri x| nt
egr at or . Implementors of these classes and their associated plugins will thus need to be intimately familiar with the Ri xShadi ngCont ext class.

A Ri xShadi ngCont ext usually represents a collection of one or more geometric points that may be shaded. The group of points may arrive via ray
tracing hits on geometry, or may be associated with tessellated micropolygons. In either case, shaders will make use of the shading context primarily in
one of two ways: inquiring about geometric information through the Get Pri nVar () and Get Bui | ti nVar () methods, and evaluation of the input
parameters to the shading function is provided via the Eval Par an{) methods.

Generally, a shader should consider its associated shading context to be const read only. Shaders that need to write to the shading context will need to
use a mutable shading context.

Fields

A Ri xShadi ngCont ext contains several fields that will be filled in by the renderer or integrator and may contain useful information pertinent to shading
computations. For all shader types, this information should be considered read-only, which is enforced through the use of a const Ri xShadi ngCont ext .
Ri xI nt egr at or plugins may be required to fill in some of these fields through the course of their operation.

® int nunPts: The number of points in the shading context. All non-uniform values can be assumed to have this length.
® struct scTraits: This struct contains several informational fields.
o eyePat h: A flag which is set to 1 if the shading context was created in the context of an eye path.
© | i ght Pat h: A flag which is set to 1 if the shading context was created in the context of a bidirectional light path.
O primaryHit: A flag which is set to 1 if the shading context is directly visible to the camera.
© m ssCont ext : A flag which is set to 1 if the shading context represents a ray miss. A miss context has no geometric information
associated with it, cannot provide primvar or parameter evaluation services, and the only available builtin variables will be the ones
associated with the incident ray.
° reyesGi d: Aflag which is set to 1 if the shading context is associated with a tessellated micropolygon representation. This is true in
certain displacement or cached execution contexts.
© Ri xSCsShadi ngvbde shadi nghvbde: This enumeration conveys the current mode associated with the current shader execution.
Knowledge of the shading mode may allow the shader to minimize certain costs associated with the current execution, i.e. by avoiding
certain parameter evaluations when it is known that those parameters do not pertain to the current execution.
© bxdf, opacity, displacenent, subsurface, vol une: Pointers to instances of the appropriate shader type. It is rare for a
shader to need knowledge of other shader types via these fields. If such knowledge is required, the use of the methods Get Bxdf (),
Get Opaci ty(), etcis encouraged instead of directly accessing the scTrai ts.
® int* integratorCxlndex: This array contains a mapping from the shading context to arrays in the Ri x| nt egr at or Cont ext : a shading
point of index i is associated with the corresponding index i nt egr at or Ct x| ndex[i] . For example, the shading point with index i can figure
out the camera ray that ultimately gave rise to the shading point by accessing the pri mar yRays[i nt egrat or Ct xI ndex[i]] field of Ri xI nte
gr at or Cont ext .
® int* rayl d: This array should usually be ignored by shaders. It is typically used by integrators to track a correspondence between the points in
the shading context and any ray specific data structures in the integrator.
® Rt Col or RGB *transni ssi on: The transmittance associated with the incident ray. This transmittance will typically be non-zero if the incident
ray traveled through participating media. Most shaders other than volume integrators will ignore this field, while integrators will need to inspect this
field in order to compute the total transmittance along a path.
* float *pointWeight: If the shading context was created via an importance sampling method, this is the associated weight of that method.
Most shaders other than volume integrators will ignore this field, while integrators may need to multiply the shader contributions by this weight.
® int *point Sanpl eCount : Only used by volume integrators to indicate the number of samples taken for multiple scattering. Integrators may
need to multiply this value into the total path throughput.
® Rt Col or RGB *opaci t yThr oughput : Per-point part of the throughput resulting from opacity continuations along the ray that produced the
associated hit.
® Rt Col or RGB *opaci ty: Per-point combined opacity: the product of presence and opacity for the given point.
® float *opacityStochasti cWei ght: Per-point probability hit-testing weight. Inverse of the probability of having selected this hit. When
dealing with non-fully-opaque surfaces, and when using probabilistic hit-testing, the combined opacity can be interpreted as the probability that
we actually hit the surface. When only considering a scalar presence value (i.e. opacity is one, so combined opacity is monochromatic), the
probability is usually the inverse of the scalar presence value, and no special weighting needs to be applied to the shading on hits. However,
when dealing with arbitrary combined opacity, it is necessary to weight the shading on hit by the product of: opaci t y (the combined opacity on
hit), and opaci t ySt ochast i cWei ght (the inverse hit-testing probability).
®* Ri xRNG *m_r ngCt x: A per-point array of random number contexts. These can be used by shaders to generate stratified random numbers. A
NULL value here means the current shading mode does not support random number generation, and shader writers should check for a NULL
value before relying on these contexts.

https://rmanwiki.pixar.com/display/REN22/Writing+Bxdfs
https://rmanwiki.pixar.com/display/REN22/Writing+Displacements
https://rmanwiki.pixar.com/display/REN22/Writing+Lights
https://rmanwiki.pixar.com/display/REN22/Writing+Patterns
https://rmanwiki.pixar.com/display/REN22/Writing+Volume+Integrators
https://rmanwiki.pixar.com/display/REN22/Writing+Integrators
https://rmanwiki.pixar.com/display/REN22/Writing+Integrators
https://rmanwiki.pixar.com/display/REN22/Mutable+Shading+Contexts
https://rmanwiki.pixar.com/display/REN22/Writing+Integrators
https://rmanwiki.pixar.com/display/REN22/Writing+Volume+Integrators
https://rmanwiki.pixar.com/display/REN22/Writing+Volume+Integrators
https://rmanwiki.pixar.com/display/REN22/Writing+Volume+Integrators

Builtin Variables

Builtin variables represent values which are usually always present for all geometry types, and are often used in fundamental shader calculations. Some
variables like P, the shading position, and Nn, the normalized shading normal, are derived from the geometry definition. Others like i nci dent Ray Spr ead
and VLen are derived from the incoming rays or from a combination of the geometry definition and the incoming rays.

Builtin variables may be queried using the Get Bui | ti nVar () method. The Bui | ti nVar enumeration is used to select one of the following variables:

Rt FI oat 3 P: The position of the point being shaded. Derived directly from the underlying tessellated representation used during hit testing.

fl oat PRadi us: When the geometry is a collection of hits, the radius of the incident ray at P. Otherwise it is half the micropolygon radius at P.

Rt FI oat 3 Po: If the geometry was displaced, the value of the undisplaced position that became P after displacement

Rt FI oat 3 Nn: The normalized shading normal, which is the normal that is typically used for shading because it has the smoothest appearance

in all circumstances.

® Rt Fl oat 3 Ngn: The normalized geometric normal. The geometric normal is the normal derived directly from the underlying tessellated
representation used during hit testing, and may be preferred to the shading normal for certain uses such as horizon culling.

® Rt Fl oat 3 Non: The normalized undisplaced normal, i.e. equivalent to Nn if the geometry did not undergo displacement.

® Rt Fl oat 3 Tn: The shading tangent. Typically a vector which is orthonormal to the shading normal Nn, often used in conjunction with same to
create an orthonormal basis.

® Rt Fl oat 3 Vn: The normalized view vector, pointing away from P. In ray tracing contexts, this is the reverse direction of the incoming ray. In

other contexts where there is no view direction, this may be set to the same as Nn.

fl oat VLen: The length of the view vector.

float curvature: The local mean surface curvature, which is the average of cur vat ur eUand cur vat ur eV.

float incidentRaySpread: How much the ray radius increases for each unit distance the incident travels.

float incidentRayRadi us: Radius of incident ray at P.

int incidentLobeSanpl ed: RixBXLobeSampled id of incident rays.

fl oat npSi ze: The micropolygon size. 0 for non-tessellated surfaces. May be used as a hint for biasing purposes.

fl oat bi asR A renderer-computed bias used for reflected rays.

fl oat biasT: Arenderer-computed bias used for transmitted rays.

fl oat u: The position of the current point on the current surface in parametric space.

fl oat v: The position of the current point on the current surface in parametric space.

fl oat w The position of the current point on the current surface in parametric space.

fl oat du: The size of the ray footprint (radius) in parametric space.

fl oat dv: The size of the ray footprint (radius) in parametric space.

fl oat dw The size of the ray footprint (radius) in parametric space.

Rt FI oat 3 dPdu: The surface derivative of P with respect to u.

Rt Fl oat 3 dPdv: The surface derivative of P with respect to v.

Rt Fl oat 3 dPdw: The surface derivative of P with respect to w.

Rt Fl oat 3 dPdt i ne: The instantaneous velocity of P in current space.

float time: The shading time of the point being shaded, normalized between shutter open and shutter close.

i nt |d: The value of any Attribute "identifier" "id" associated with the geometry.

i nt 1d2: The value of any Attribute "identifier" "id2" associated with the geometry.

fl oat outsidel OR The incident index of refraction.

Rt Fl oat 3 G : The opacity.

Ri xLPESt at e | peSt at e: The current LPE state.

int | aunchShadi ngCt xI d: The ID of the shading context that launched the incident ray.

Rt Fl oat 3 not i onFor e: Forward 2D raster-space motion vector.

Rt Fl oat 3 not i onBack: Backwards 2D raster-space motion vector.

float curvatureU: The principal curvature in the parametric u direction, computed via dot(dNu, dPu) / |[dPu|*2, where dNu is a difference

between two surface normals computed at P and P' (P' being a point near P offset in the u direction) and dPu is the difference between P and P".

This is a signed quantity.

® float curvatureV: The principal curvature in the parametric v direction, computed via dot(dNv, dPv) / |dPv|*2, where dNv is a difference
between two surface normals computed at P and P' (P' being a point near P offset in the v direction) and dPv is the difference between P and P".
This is a signed quantity.

® Rt Fl oat 3 dPcarer adt i me: The instantaneous velocity of P relative to the camera.

* f|oat wavel engt h: The wavelength of the incident ray.

Bui | ti nVar must be passed a pointer to a pointer of the appropriate type for the variable. The returned pointer points at const storage containing the
value of the variable, one value for each point in the Ri xShadi ngCont ext . This storage is owned by the renderer and is valid for the duration of the
shader execution.

For normal shading contexts, Set Bui | ti nVar () is a no-op. Shaders that wish to change the values of builtin variables will need to create a mutable
shading context.

The following diagram illustrates several fundamental builtin variables: the surface position P, the normalized shading normal Nn and the normalized
shading tangent Tn, the geometric normal Ngn, and the parametric derivatives dPdu and dPdv.

https://rmanwiki.pixar.com/display/REN22/Mutable+Shading+Contexts
https://rmanwiki.pixar.com/display/REN22/Mutable+Shading+Contexts

vn /
® ,
u isolines /l”f O \/‘
-/ [— _ T~
~ — —~In /T

v isolines

The following diagram illustrates the i nci dent RaySpr ead and i nci dent RayRadi us properties of the ray which are related to ray differentials, and are
important to the computation of filter widths for antialiasing.

incidentRaySpread | , _
incidentRayRadius

unit vector

incident ray (length = Vlen)

The next diagram illustrates an incident ray and potential reflected rays and transmitted rays that may be returned by a Bxdf as the next indirect ray fired
by an integrator. Here, the green lines represent a side view of the tessellated micropolygon geometry. Note that the geometric normal Ngn and the

micropolygon size mpsize is derived directly from the tessellated representation, while the biasR and biasT variables can be used to bias the origins of the
indirect rays.

incident ray Ngn

reflected ray

biasT

transmitted ray

Primitive Variables

Primitive variables (often referred to as primvars) represent values which may be optionally present on the geometry. These primvars are uniquely nhamed
and may be supplied with the geometry definition. Shaders are usually written knowing the name and data type of certain primvars in advance, such as
texture coordinates. However, since the primvars are optional, shaders are expected to fail gracefully if the primvars are missing.

The first variant of Get Pri nVar () can be used to efficiently query the existence, type, and array length of a primvar. The other variants return a pointer to
const storage containing the value of the primvar in the var output parameter, if the primvar exists. If the primvar cannot be found, storage will still be
allocated and will be filled with the value of the input fi | | parameter. The optional r adi us output parameter if supplied will point at storage containing the
approximate isotropic filter radius associated with the primvar. This value is computed by the renderer from the ray differentials and can be used to perform
any necessary shader antialiasing.

There are also variants of Get Pri mVar () which return the partial derivatives of the primvar measured with respect to the builtin variables u and v. These
methods may be used in certain conditions that are otherwise hard to filter correctly.

For normal shading contexts, Set Pri nVar () is a no-op. Shaders that wish to change the values of primitive variables will need to create a mutable
shading context.

1 Primitive variables of type Rt Fl oat 3 and Rt Mat ri x4x4 are automatically transformed and returned in current space, which is generally
considered the optimal space for the renderer to perform operations. Plugin authors should make no assumptions about what current space
actually maps to, and should transform such primvars from current to another space if required using the transformation routines.

Parameter Evaluation

Evaluation of the input parameters to the shader is provided via the Eval Par an() methods. Input parameters may be constant (the direct parameters to
the shader invocation), or may be connected to an upstream node and trigger an upstream of that node (and in turn, any of its dependencies). All such
upstream computation will be automatically cached by the renderer for the duration of the Ri xShadi ngCont ext .

The desired input parameter to the shader is selected by an integer par ani d, which is the ordinal position of the parameter in the parameter table
returned by Ri xShadi ngPl ugi n: : Get Par anTabl e() . Callers are expected to know the par am d, the type of the associated parameter and are
expected to pass a pointer to a pointer of the appropriate type to Eval Par an() .

If the value cannot be obtained from the shading network or from the direct parameters associated with the shader invocation, the result will be filled with
the default value provided in df | t .

Depending on whether the input parameter is the default value, or a constant value or a connection, the call to Eval Par an{) will either return a pointer to
storage containing a single value or an entire nunPt s worth of values. This can be changed by setting the optional parameter pr onot eToVar yi ng to be
true, in which case the storage for the result will be guaranteed to be an entire numPts worth of values; however, this does not alter the return value. This

storage is allocated by the renderer and has a lifetime associated with the shading context; it does not need to be managed by the caller.

The return value of Eval Par amis a value of Ri xSCDet ai | : k_Ri xSCUni f or mindicating that the input parameter was uniform (a constant or default
value) or k_Ri xSCVar yi ng indicating the parameter was varying (a connection). If the value cannot be found (typically because it does not have the
correct matching type, i.e. the wrong version of Eval Par amwas used) then k_Ri xSCl nval i dDet ai | will be returned.

In some circumstances, users of Eval Par an{) that do not know the par anml d (perhaps due to the use of a dynamic parameter table) or the type of the
parameter can introspect for the paramld or information about the parameter via the Get Par am d() and the Get Par aml nf o() methods.

Some examples for reading different types of input parameters are shown below.

https://rmanwiki.pixar.com/display/REN22/Mutable+Shading+Contexts
https://rmanwiki.pixar.com/display/REN22/Mutable+Shading+Contexts
https://rmanwiki.pixar.com/display/REN22/RixShadingPlugin#RixShadingPlugin-getparamtable
https://rmanwiki.pixar.com/display/REN22/RixShadingPlugin#RixShadingPlugin-dynamicparameters

/! Read a uniforminteger value, and store the result in the

/1l Rtlnt noiseType variable. mnoiseType is a PxrCustonNoi se

/1 menber variable that contains the default noi seType val ue.

Rt I nt *noi seTypePtr;

sct x- >Eval Par an(k_noi seType, -1, &noi seTypePtr, &m noiseType, unifornj;
Rt I nt const noi seType(*noi seTypePtr);

/1 Read a varying float value for the threshold input paraneter.

/1 mthreshold is a PxrCustoniNoi se nmenber variable that contains

/1 the default val ue.

Rt Fl oat *t hreshol d;

sct x->Eval Param(k_t hreshol d, -1, & hreshold, &mthreshold, varying);

/! Read one value froma varying float[2] array.

Rt Fl oat *repeat UVO, *repeat UV1;

sct x->Eval Par an(k_r epeat UV, 0, &repeat U0, &mrepreatUV, varying);
/! Read the other value froma varying float[2] array. Note that
/1 the arraylndex paraneter is set to 1 to read the second val ue.
sct x- >Eval Par anm(k_repeat UV, 1, &repeatU1, &mrepreatUV, varying);

/! Read in a float[3] array of values into a RtFloat3 variable.
Rt Fl oat 3 *scal e;
sct x->Eval Paran(k_scale, -1, &scale, &mscale, varying);

/1 Read in a varying color val ue.
Rt Col or RGB* def aul t Col or;
sct x- >Eval Par am(k_def aul t Col or, -1, &defaultColor, &mdefaultColor, varying);

Memory Management

Ri xShadi ngCont ext provides a fast memory allocation service tailored to shaders that need to execute quickly. The main provider of this service is the A
Il ocat e() routine; the New() routine and the cl ass Al | ocat or are wrappers around Al | ocat e() . The backing store for this memory allocation are
memory pools which are tailored specifically to the lifetime requirements of Ri xPat t er n and Ri xBxdf , with the latter category equating to the lifetime of
the Ri xShadi ngCont ext . Clients that use these memory management services should use "placement new" semantics, and should not rely on the
invocation of a destructor.

Tracing Rays

Ri xShadi ngCont ext provides a limited service for tracing rays. The Get Near est Hi t s() routine allows shaders to trace rays to determine the nearest
hit. These rays do not trigger shading on the hit geometry, and should thus be considered geometric probe rays: the only information that can be returned
from Get Near est Hi t s is a Rt Hi t Poi nt struct, which contains a minimal set of geometric information including the distance, the P, Ng, u, v builtins of

the hit geometry, and the filter and micropolygon sizes. A ray that missed is indicated by the distance being set to 0. While limited, this service is sufficient
to allow for calculation of effects such as ambient occlusion. This service should not be confused with the Ri xI nt egr at or Cont ext ability to trace rays,

which is provided only to implementors of Ri x| nt egr at or .

Transformations

Transformation of Rt FI oat 3 data between two coordinate systems known to the renderer can be accomplished using the Tr ansf or n{) method. The
interpretation of the Rt Fl oat 3 data as point, vector, or normal data is specified using the Tr ansf or il nt er pr et at i on enum. The array of data must be
nunPt s in size and the data will be transformed in place. A non-zero return value indicates a failed transformation, typically due to unknown coordinate
systems being specified.

In addition, transform matrices between two coordinate systems can be returned directly via the Get Tr ansf or () method. The nmat ri x output
parameter points at storage allocated by the renderer containing the matrices. The size of this storage is indicated by the numMvat ri ces output
parameter. If the transformation is time varying, the nunivat r i ces returned will be the same as nunPt s. If the transformation is uniform, nunivat ri ces
will be set to 1. A non-zero return value indicates a failed transformation, typically due to unknown coordinate systems being specified.

Querying Ray Properties

As long as the Ri x| nt egr at or used supports the appropriate ray property query, plugin authors may want to query ray properties such as the ray depth
or eye throughput, in order to allow for artistic control or optimization. For instance, as an optimization a Ri xBxdf may want to skip the evaluation of a
particularly expensive lobe, if the current ray depth of the hit point is beyond some arbitrary threshold. This service is provided by the Get Property()
routine on the Ri xShadi ngCont ext . Callers of this routine are responsible for allocating and deallocating the r esul t memory. The integrator is
responsible for filling in the result. Below is a code snippet demonstrating how to use this feature.

/Il Query ray depths for each point in the shadi ng context
int nPts = shadi ngC x- >nunPts;
int* rayDepths = new int [nPts];
if (vCtx->GetProperty(k_RayDepth, rayDepths))
{
/1 Do sonething expensive for small ray depths, or something cheaper for |arge ray depths

}
del ete[] rayDepths;

https://rmanwiki.pixar.com/display/REN22/Writing+Integrators
https://rmanwiki.pixar.com/display/REN22/Writing+Integrators
https://rmanwiki.pixar.com/display/REN22/Writing+Integrators#WritingIntegrators-RayProperty
https://rmanwiki.pixar.com/display/REN22/Writing+Bxdfs

For documentation on the available ray properties, please consult the integrator ray property query documentation.

https://rmanwiki.pixar.com/display/REN22/Writing+Integrators#WritingIntegrators-RayProperty

	RixShadingContext

