
RixShadingContext

Introduction
Fields
Builtin Variables
Primitive Variables
Parameter Evaluation
Memory Management
Tracing Rays
Transformations
Querying Ray Properties

Introduction

A encapsulates a - a description of the environment in which shading is to be performed. It is the primary domain RixShadingContext shading context
of operation for the shader classes , , , , and , and is also of high importance to RixBxdf RixDisplacement RixLight RixPattern RixVolume RixInt

. Implementors of these classes and their associated plugins will thus need to be intimately familiar with the class.egrator RixShadingContext

A usually represents a collection of one or more geometric points that may be shaded. The group of points may arrive via ray RixShadingContext
tracing hits on geometry, or may be associated with tessellated micropolygons. In either case, shaders will make use of the shading context primarily in
one of two ways: inquiring about geometric information through the and methods, and evaluation of the input GetPrimVar() GetBuiltinVar()
parameters to the shading function is provided via the methods.EvalParam()

Generally, a shader should consider its associated shading context to be read only. Shaders that need to write to the shading context will need to const
use a mutable shading context.

Fields

A contains several fields that will be filled in by the renderer or integrator and may contain useful information pertinent to shading RixShadingContext
computations. For all shader types, this information should be considered read-only, which is enforced through the use of a . const RixShadingContext

 plugins may be required to fill in some of these fields through the course of their operation.RixIntegrator

int numPts: The number of points in the shading context. All non-uniform values can be assumed to have this length.
struct scTraits: This struct contains several informational fields.

eyePath: A flag which is set to 1 if the shading context was created in the context of an eye path.
lightPath: A flag which is set to 1 if the shading context was created in the context of a bidirectional light path.
primaryHit: A flag which is set to 1 if the shading context is directly visible to the camera.
missContext: A flag which is set to 1 if the shading context represents a ray . A miss context has no geometric information miss
associated with it, cannot provide primvar or parameter evaluation services, and the only available builtin variables will be the ones
associated with the incident ray.
reyesGrid: A flag which is set to 1 if the shading context is associated with a tessellated micropolygon representation. This is true in
certain displacement or cached execution contexts.
RixSCShadingMode shadingMode: This enumeration conveys the current associated with the current shader execution. mode
Knowledge of the shading mode may allow the shader to minimize certain costs associated with the current execution, i.e. by avoiding
certain parameter evaluations when it is known that those parameters do not pertain to the current execution.
bxdf, opacity, displacement, subsurface, volume: Pointers to instances of the appropriate shader type. It is rare for a
shader to need knowledge of other shader types via these fields. If such knowledge is required, the use of the methods GetBxdf(),

 etc is encouraged instead of directly accessing the . GetOpacity(), scTraits
int* integratorCtxIndex: This array contains a mapping from the shading context to arrays in the : a shading RixIntegratorContext
point of index is associated with the corresponding index . For example, the shading point with index can figure i integratorCtxIndex[i] i
out the camera ray that ultimately gave rise to the shading point by accessing the field of primaryRays[integratorCtxIndex[i]] RixInte

.gratorContext
int* rayId: This array should usually be ignored by shaders. It is typically used by integrators to track a correspondence between the points in
the shading context and any ray specific data structures in the integrator.
RtColorRGB *transmission: The transmittance associated with the incident ray. This transmittance will typically be non-zero if the incident
ray traveled through participating media. Most shaders other than will ignore this field, while integrators will need to inspect this volume integrators
field in order to compute the total transmittance along a path.
float *pointWeight: If the shading context was created via an importance sampling method, this is the associated weight of that method.
Most shaders other than will ignore this field, while integrators may need to multiply the shader contributions by this weight.volume integrators
int *pointSampleCount: Only used by to indicate the number of samples taken for multiple scattering. Integrators may volume integrators
need to multiply this value into the total path throughput.
RtColorRGB *opacityThroughput: Per-point part of the throughput resulting from opacity continuations along the ray that produced the
associated hit.
RtColorRGB *opacity: Per-point combined opacity: the product of presence and opacity for the given point.
float *opacityStochasticWeight: Per-point probability hit-testing weight. Inverse of the probability of having selected this hit. When
dealing with non-fully-opaque surfaces, and when using probabilistic hit-testing, the combined opacity can be interpreted as the probability that
we actually hit the surface. When only considering a scalar presence value (i.e. opacity is one, so combined opacity is monochromatic), the
probability is usually the inverse of the scalar presence value, and no special weighting needs to be applied to the shading on hits. However,
when dealing with arbitrary combined opacity, it is necessary to weight the shading on hit by the product of: (the combined opacity on opacity
hit), and (the inverse hit-testing probability).opacityStochasticWeight
RixRNG *m_rngCtx: A per-point array of random number contexts. These can be used by shaders to generate stratified random numbers. A
NULL value here means the current shading mode does not support random number generation, and shader writers should check for a NULL
value before relying on these contexts.

https://rmanwiki.pixar.com/display/REN22/Writing+Bxdfs
https://rmanwiki.pixar.com/display/REN22/Writing+Displacements
https://rmanwiki.pixar.com/display/REN22/Writing+Lights
https://rmanwiki.pixar.com/display/REN22/Writing+Patterns
https://rmanwiki.pixar.com/display/REN22/Writing+Volume+Integrators
https://rmanwiki.pixar.com/display/REN22/Writing+Integrators
https://rmanwiki.pixar.com/display/REN22/Writing+Integrators
https://rmanwiki.pixar.com/display/REN22/Mutable+Shading+Contexts
https://rmanwiki.pixar.com/display/REN22/Writing+Integrators
https://rmanwiki.pixar.com/display/REN22/Writing+Volume+Integrators
https://rmanwiki.pixar.com/display/REN22/Writing+Volume+Integrators
https://rmanwiki.pixar.com/display/REN22/Writing+Volume+Integrators

Builtin Variables

Builtin variables represent values which are usually always present for all geometry types, and are often used in fundamental shader calculations. Some
variables like , the shading position, and , the normalized shading normal, are derived from the geometry definition. Others like P Nn incidentRaySpread
and are derived from the incoming rays or from a combination of the geometry definition and the incoming rays.VLen

Builtin variables may be queried using the method. The enumeration is used to select one of the following variables:GetBuiltinVar() BuiltinVar

RtFloat3 P: The position of the point being shaded. Derived directly from the underlying tessellated representation used during hit testing.
float PRadius: When the geometry is a collection of hits, the radius of the incident ray at P. Otherwise it is half the micropolygon radius at P.
RtFloat3 Po: If the geometry was displaced, the value of the undisplaced position that became P after displacement
RtFloat3 Nn: The normalized , which is the normal that is typically used for shading because it has the smoothest appearance shading normal
in all circumstances.
RtFloat3 Ngn: The normalized . The geometric normal is the normal derived directly from the underlying tessellated geometric normal
representation used during hit testing, and may be preferred to the shading normal for certain uses such as horizon culling.
RtFloat3 Non: The normalized undisplaced normal, i.e. equivalent to Nn if the geometry did not undergo displacement.
RtFloat3 Tn: The shading tangent. Typically a vector which is orthonormal to the shading normal Nn, often used in conjunction with same to
create an orthonormal basis.
RtFloat3 Vn: The normalized view vector, pointing away from P. In ray tracing contexts, this is the reverse direction of the incoming ray. In
other contexts where there is no view direction, this may be set to the same as Nn.
float VLen: The length of the view vector.
float curvature: The local mean surface curvature, which is the average of and .curvatureU curvatureV
float incidentRaySpread: How much the ray radius increases for each unit distance the incident travels.
float incidentRayRadius: Radius of incident ray at P.
int incidentLobeSampled: RixBXLobeSampled id of incident rays.
float mpSize: The micropolygon size. 0 for non-tessellated surfaces. May be used as a hint for biasing purposes.
float biasR: A renderer-computed bias used for reflected rays.
float biasT: A renderer-computed bias used for transmitted rays.

ufloat : The position of the current point on the current surface in parametric space.
vfloat : The position of the current point on the current surface in parametric space.
wfloat : The position of the current point on the current surface in parametric space.
dufloat : The size of the ray footprint (radius) in parametric space.
dvfloat : The size of the ray footprint (radius) in parametric space.
dwfloat : The size of the ray footprint (radius) in parametric space.

RtFloat3 dPdu: The surface derivative of P with respect to u.
dPdvRtFloat3 : The surface derivative of P with respect to v.
dPdwRtFloat3 : The surface derivative of P with respect to w.
dPdtimeRtFloat3 : The instantaneous velocity of P in current space.

float time: The shading time of the point being shaded, normalized between shutter open and shutter close.
int Id: The value of any Attribute "identifier" "id" associated with the geometry.
int Id2: The value of any Attribute "identifier" "id2" associated with the geometry.
float outsideIOR: The incident index of refraction.
RtFloat3 Oi: The opacity.
RixLPEState lpeState: The current LPE state.
int launchShadingCtxId: The ID of the shading context that launched the incident ray.
RtFloat3 motionFore: Forward 2D raster-space motion vector.

motionBackRtFloat3 : Backwards 2D raster-space motion vector.
float curvatureU: The principal curvature in the parametric u direction, computed via dot(dNu, dPu) / |dPu|^2, where dNu is a difference
between two surface normals computed at P and P' (P' being a point near P offset in the u direction) and dPu is the difference between P and P`.
This is a signed quantity.
float curvatureV: The principal curvature in the parametric v direction, computed via dot(dNv, dPv) / |dPv|^2, where dNv is a difference
between two surface normals computed at P and P' (P' being a point near P offset in the v direction) and dPv is the difference between P and P`.
This is a signed quantity.
RtFloat3 dPcameradtime: The instantaneous velocity of P relative to the camera.
float wavelength: The wavelength of the incident ray.

BuiltinVar must be passed a pointer to a pointer of the appropriate type for the variable. The returned pointer points at storage containing the const
value of the variable, one value for each point in the . This storage is owned by the renderer and is valid for the duration of the RixShadingContext
shader execution.

For normal shading contexts, is a no-op. Shaders that wish to change the values of builtin variables will need to create a SetBuiltinVar() mutable
.shading context

The following diagram illustrates several fundamental builtin variables: the surface position , the normalized shading normal and the normalized P Nn
shading tangent , the geometric normal , and the parametric derivatives and Tn Ngn dPdu dPdv.

https://rmanwiki.pixar.com/display/REN22/Mutable+Shading+Contexts
https://rmanwiki.pixar.com/display/REN22/Mutable+Shading+Contexts

The following diagram illustrates the and properties of the ray which are related to ray differentials, and are incidentRaySpread incidentRayRadius
important to the computation of filter widths for antialiasing.

The next diagram illustrates an incident ray and potential reflected rays and transmitted rays that may be returned by a Bxdf as the next indirect ray fired
by an integrator. Here, the green lines represent a side view of the tessellated micropolygon geometry. Note that the geometric normal Ngn and the
micropolygon size mpsize is derived directly from the tessellated representation, while the biasR and biasT variables can be used to bias the origins of the
indirect rays.

Primitive Variables

Primitive variables (often referred to as) represent values which may be optionally present on the geometry. These primvars are uniquely named primvars
and may be supplied with the geometry definition. Shaders are usually written knowing the name and data type of certain primvars in advance, such as
texture coordinates. However, since the primvars are optional, shaders are expected to fail gracefully if the primvars are missing.

The first variant of can be used to efficiently query the existence, type, and array length of a primvar. The other variants return a pointer to GetPrimVar()
 storage containing the value of the primvar in the output parameter, if the primvar exists. If the primvar cannot be found, storage will still be const var

allocated and will be filled with the value of the input parameter. The optional output parameter if supplied will point at storage containing the fill radius
approximate isotropic filter radius associated with the primvar. This value is computed by the renderer from the ray differentials and can be used to perform
any necessary shader antialiasing.

There are also variants of which return the partial derivatives of the primvar measured with respect to the builtin variables u and v. These GetPrimVar()
methods may be used in certain conditions that are otherwise hard to filter correctly.

For normal shading contexts, is a no-op. Shaders that wish to change the values of primitive variables will need to create a SetPrimVar() mutable
.shading context

Parameter Evaluation

Evaluation of the input parameters to the shader is provided via the methods. Input parameters may be constant (the direct parameters to EvalParam()
the shader invocation), or may be to an upstream node and trigger an upstream of that node (and in turn, any of its dependencies). All such connected
upstream computation will be automatically cached by the renderer for the duration of the .RixShadingContext

The desired input parameter to the shader is selected by an integer , which is the ordinal position of the parameter in the parameter table paramId
returned by Callers are expected to know the , the type of the associated parameter and are .RixShadingPlugin::GetParamTable() paramId
expected to pass a pointer to a pointer of the appropriate type to .EvalParam()

If the value cannot be obtained from the shading network or from the direct parameters associated with the shader invocation, the result will be filled with
the default value provided in .dflt

Depending on whether the input parameter is the default value, or a constant value or a connection, the call to will either return a pointer to EvalParam()
storage containing a single value or an entire worth of values. This can be changed by setting the optional parameter to be numPts promoteToVarying
true, in which case the storage for the result will be guaranteed to be an entire numPts worth of values; however, this does not alter the return value. This
storage is allocated by the renderer and has a lifetime associated with the shading context; it does not need to be managed by the caller.

The return value of is a value of : indicating that the input parameter was uniform (a constant or default EvalParam RixSCDetail k_RixSCUniform
value) or varying (a connection). If the value cannot be found (typically because it does not have the indicating the parameter was k_RixSCVarying
correct matching type, i.e. the wrong version of was used) then will be returned.EvalParam k_RixSCInvalidDetail

In some circumstances, users of that do not know the (perhaps due to the use of a) or the type of the EvalParam() paramId dynamic parameter table
parameter can introspect for the paramId or information about the parameter via the and the methods. GetParamId() GetParamInfo()

Some examples for reading different types of input parameters are shown below.

Primitive variables of type and are automatically transformed and returned in space, which is generally RtFloat3 RtMatrix4x4 current
considered the optimal space for the renderer to perform operations. Plugin authors should make no assumptions about what current space
actually maps to, and should transform such primvars from current to another space if required using the transformation routines.

https://rmanwiki.pixar.com/display/REN22/Mutable+Shading+Contexts
https://rmanwiki.pixar.com/display/REN22/Mutable+Shading+Contexts
https://rmanwiki.pixar.com/display/REN22/RixShadingPlugin#RixShadingPlugin-getparamtable
https://rmanwiki.pixar.com/display/REN22/RixShadingPlugin#RixShadingPlugin-dynamicparameters

 // Read a uniform integer value, and store the result in the
 // RtInt noiseType variable. m_noiseType is a PxrCustomNoise
 // member variable that contains the default noiseType value.
 RtInt *noiseTypePtr;
 sctx->EvalParam(k_noiseType, -1, &noiseTypePtr, &m_noiseType, uniform);
 RtInt const noiseType(*noiseTypePtr);

 // Read a varying float value for the threshold input parameter.
 // m_threshold is a PxrCustomNoise member variable that contains
 // the default value.
 RtFloat *threshold;
 sctx->EvalParam(k_threshold, -1, &threshold, &m_threshold, varying);

 // Read one value from a varying float[2] array.
 RtFloat *repeatUV0, *repeatUV1;
 sctx->EvalParam(k_repeatUV, 0, &repeatUV0, &m_repreatUV, varying);
 // Read the other value from a varying float[2] array. Note that
 // the arrayIndex parameter is set to 1 to read the second value.
 sctx->EvalParam(k_repeatUV, 1, &repeatUV1, &m_repreatUV, varying);

 // Read in a float[3] array of values into a RtFloat3 variable.
 RtFloat3 *scale;
 sctx->EvalParam(k_scale, -1, &scale, &m_scale, varying);

 // Read in a varying color value.
 RtColorRGB* defaultColor;
 sctx->EvalParam(k_defaultColor, -1, &defaultColor, &m_defaultColor, varying);

Memory Management

RixShadingContext provides a fast memory allocation service tailored to shaders that need to execute quickly. The main provider of this service is the A
 routine; the routine and the are wrappers around . The backing store for this memory allocation are llocate() New() class Allocator Allocate()

memory pools which are tailored specifically to the lifetime requirements of and , with the latter category equating to the lifetime of RixPattern RixBxdf
the . CRixShadingContext lients that use these memory management services should use "placement new" semantics, and should not rely on the
invocation of a destructor.

Tracing Rays

 provides a limited service for tracing rays. The routine allows shaders to trace rays to determine the nearest RixShadingContext GetNearestHits()
hit. These rays do not trigger shading on the hit geometry, and should thus be considered rays: the only information that can be returned geometric probe
from is a struct, which contains a minimal set of geometric information including the distance, the , , , builtins of GetNearestHits RtHitPoint P Ng u v
the hit geometry, and the filter and micropolygon sizes. A ray that missed is indicated by the distance being set to 0. While limited, this service is sufficient
to allow for calculation of effects such as ambient occlusion. This service should not be confused with the ability to trace rays, RixIntegratorContext
which is provided only to implementors of .RixIntegrator

Transformations

Transformation of data between two coordinate systems known to the renderer can be accomplished using the method. The RtFloat3 Transform()
interpretation of the data as point, vector, or normal data is specified using the enum. The array of data must be RtFloat3 TransformInterpretation

 in size and the data will be transformed in place. A non-zero return value indicates a failed transformation, typically due to unknown coordinate numPts
systems being specified.

In addition, transform matrices between two coordinate systems can be returned directly via the method. The output GetTransform() matrix
parameter points at storage allocated by the renderer containing the matrices. The size of this storage is indicated by the output numMatrices
parameter. If the transformation is time varying, the returned will be the same as . If the transformation is uniform, numMatrices numPts numMatrices
will be set to 1. A non-zero return value indicates a failed transformation, typically due to unknown coordinate systems being specified.

Querying Ray Properties

As long as the used supports the appropriate , plugin authors may RixIntegrator ray property query want to query ray properties such as the ray depth
or eye throughput, in order to allow for artistic control or optimization. For instance, as an optimization a RixBxdf may want to skip the evaluation of a
particularly expensive lobe, if the current ray depth of the hit point is beyond some arbitrary threshold. This service is provided by the GetProperty()

allers of this routine are responsible for allocating and deallocating the memory. The integrator is routine on the RixShadingContext. C result
responsible for filling in the result. Below is a code snippet demonstrating how to use this feature.

// Query ray depths for each point in the shading context
int nPts = shadingCtx->numPts;
int* rayDepths = new int [nPts];
if (vCtx->GetProperty(k_RayDepth, rayDepths))
{
 // Do something expensive for small ray depths, or something cheaper for large ray depths
}
delete[] rayDepths;

https://rmanwiki.pixar.com/display/REN22/Writing+Integrators
https://rmanwiki.pixar.com/display/REN22/Writing+Integrators
https://rmanwiki.pixar.com/display/REN22/Writing+Integrators#WritingIntegrators-RayProperty
https://rmanwiki.pixar.com/display/REN22/Writing+Bxdfs

For documentation on the available ray properties, please consult the documentation.integrator ray property query

https://rmanwiki.pixar.com/display/REN22/Writing+Integrators#WritingIntegrators-RayProperty

	RixShadingContext

