
Writing Bxdfs

Introduction
RixBxdfFactory

Implementing the RixBxdfFactory Interface
RixBxdfFactory::BeginScatter()
RixBxdfFactory::BeginOpacity()
RixBxdfFactory::BeginInterior()
Instance Hints

RixBxdf
Sample Generation
Sample Evaluation
Evaluation Domain

Additional Considerations

Introduction

This documentation is intended to instruct developers in the authoring of custom (previously referred to as). Developers should also bxdfs surface shaders
consult the header file for complete details.RixBxdf.h

The interface is a subclass of , and defines a shading plugin responsible for creating a object from a RixBxdfFactory RixShadingPlugin RixBxdf
shading context () and the set of connected patterns ().RixShadingContext RixPattern

The interface characterizes the (sometimes referred to as) for a given point on the surface of an RixBxdf light-scattering behavior material response
object.

RixBxdfFactory

Implementing the RixBxdfFactory Interface

RixBxdfFactory is a subclass of , and therefore shares the same , , and logic as other RixShadingPlugin initialization synchronization parameter table
shading plugins. Therefore to start developing your own Bxdf, you can and make sure your bxdf factory class implements the #include "RixBxdf.h"
required methods inherited from the interface: , , , , and RixShadingPlugin Init() Finalize() Synchronize() GetParamTable() CreateInstanc

. Generally, there is one shading plugin instance of a RixBxdfFactory per bound (RIB) request. This instance may be active in multiple eData() RiBxdf
threads simultaneously.

Integrators () use objects by invoking to obtain a Because a RixIntegrator RixBxdfFactory RixBxdfFactory::BeginScatter() RixBxdf. Ri

 is expected to be a lightweight object that may be created many times over the course of the render, is expected to take xBxdf RixBxdfFactory
advantage of the provided by . In particular, is provided a pointer to an instance lightweight instancing services RixShadingPlugin BeginScatter()
data that is created by (), which is called once per , as defined by the unique set of RixBxdfFactory::CreateInstanceData shading plugin instance
parameters supplied to the material description. It is expected that the instance data will point to a private cached representation of any expensive setup
which depends on the parameters, and will reuse this cached representation many times over the course of the render to create BeginScatter() RixBx

 objects. df

The macro defines the RIX_BXDFPLUGINCREATE() CreateRixBxdfFactory() method, which is called by the renderer to create an instance of the
bxdf plugin. Generally, the implementation of this method should simply return a allocated copy of your bxdf factory class. Similarly, the Rnew IX_BXDFPLU

 macro defines the function called by the renderer to delete an instance of the bxdf plugin; a typical GINDESTROY() DestroyRixBxdfFactory()
implementation of this function is to the passed in bxdf pointer:delete

RIX_BXDFPLUGINCREATE
{
 return new MyBxdfFactory();
}
RIX_BXDFPLUGINDESTROY
{
 delete ((MyBxdfFactory*)bxdf);
}

RixBxdfFactory::BeginScatter()

As mentioned above, integrators invoke to obtain a . The renderer's operating model is that the Bxdf RixBxdfFactory::BeginScatter() RixBxdf
, and that is obtained this way is a , with the closure functions being , closure GenerateSample EvaluateSample, EvaluateSamplesAtIndex() Emit

. The should stash state in the object and consider that the lifetime is under control of the Local RixBxdfFactory RixBxdf RixBxdf
integrator. Generally integrators will attempt to minimize the number of live objects but may nonetheless require a large number. For this RixBxdf
reason, the instances should attempt to minimize memory consumption and construction / deconstruction costs.RixBxdf

https://en.wikipedia.org/wiki/Bidirectional_scattering_distribution_function
https://rmanwiki.pixar.com/display/REN22/RixShadingPlugin
https://rmanwiki.pixar.com/display/REN22/RixShadingContext
https://rmanwiki.pixar.com/display/REN22/Writing+Patterns
https://rmanwiki.pixar.com/display/REN22/RixShadingPlugin
https://rmanwiki.pixar.com/display/REN22/RixShadingPlugin#RixShadingPlugin-initialization
https://rmanwiki.pixar.com/display/REN22/RixShadingPlugin#RixShadingPlugin-synchronization
https://rmanwiki.pixar.com/display/REN22/RixShadingPlugin#RixShadingPlugin-getparamtable
https://rmanwiki.pixar.com/display/REN22/RixShadingPlugin#RixShadingPlugin-initialization
https://rmanwiki.pixar.com/display/REN22/RixShadingPlugin#RixShadingPlugin-initialization
https://rmanwiki.pixar.com/display/REN22/RixShadingPlugin#RixShadingPlugin-synchronization
https://rmanwiki.pixar.com/display/REN22/RixShadingPlugin#RixShadingPlugin-getparamtable
http://rmanwiki-test.pixar.com/display/REN22/RixShadingPlugin#RixShadingPlugin-lightweightinstance
http://rmanwiki-test.pixar.com/display/REN22/RixShadingPlugin#RixShadingPlugin-lightweightinstance
https://rmanwiki.pixar.com/display/REN22/Writing+Integrators
https://rmanwiki.pixar.com/display/REN22/RixShadingPlugin#RixShadingPlugin-lightweightinstance

Any computations that the Bxdf need in order to efficient evaluate its closure functions should be computed once inside RixBxdfFactory::
BeginScatter(), and then in the overridden RixBxdf class. Critically, these computations include upstream evaluation of any pattern networks. saved
Therefore, it is typical for to invoke BeginScatter() RixShadingContext::EvalParam() in order to evaluate the relevant bxdf input parameters,
and then pass the pointers returned from to the Bxdf constructor. Since Bxdfs also generally require geometric data, or built-in variables, such EvalParam
as the shading normal (Nn) and viewing direction (Vn), either or the Bxdf constructor itself will need to callBeginScatter() RixShadingContext::
GetBuiltinVar() function for each such built-in variable.

The following code demonstrates a trivial constant Bxdf's implementation of . Here, the parameter id for the emission color is passed to BeginScatter()
 in order to get a pointer that is passed to the () constructor.EvalParam() emitColor ConstantBxdf

RixBxdf *
PxrConstant::BeginScatter(RixShadingContext const *sCtx,
 RixBXLobeTraits const &lobesWanted,
 RixSCShadingMode sm,
 RtPointer instanceData)
{
 // Get all input data
 RtColorRGB const* emitColor;
 sCtx->EvalParam(k_emitColor, -1, &emitColor, &m_emitColor, true);
 RixShadingContext::Allocator pool(sCtx);
 void *mem = pool.AllocForBxdf<ConstantBxdf>(1);
 ConstantBxdf *eval = new (mem) ConstantBxdf(sCtx, this, lobesWanted, emitColor);
 return eval;
}

In the following code from , we demonstrate how its constructor sets up required geometric information that is later on used for sample PxrDiffuse
generation and evaluation.

 PxrDiffuse(RixShadingContext const *sc, RixBxdfFactory *bx,
 RixBXLobeTraits const &lobesWanted,
 RtColorRGB const *emit,
 RtColorRGB const *diff,
 RtColorRGB const *trans,
 RtNormal3 const *bumpNormal) :
 RixBxdf(sc, bx),
 m_lobesWanted(lobesWanted),
 m_emit(emit),
 m_diffuse(diff),
 m_transmission(trans),
 m_bumpNormal(bumpNormal)
 {
 RixBXLobeTraits lobes = s_reflDiffuseLobeTraits | s_albedoLobeTraits;
 if (m_transmission)
 lobes |= s_tranDiffuseLobeTraits;

 m_lobesWanted &= lobes;

 sc->GetBuiltinVar(RixShadingContext::k_P, &m_P);
 if(m_bumpNormal)
 m_Nn = bumpNormal;
 else
 sc->GetBuiltinVar(RixShadingContext::k_Nn, &m_Nn);
 sc->GetBuiltinVar(RixShadingContext::k_Ngn, &m_Ngn);
 sc->GetBuiltinVar(RixShadingContext::k_Tn, &m_Tn);
 sc->GetBuiltinVar(RixShadingContext::k_Vn, &m_Vn);
 }

 is passed an instance data pointer created via that can be used to cache and reuse certain calculations BeginScatter() CreateInstanceData
common amongst all factory instances of the same Bxdf; for more information, please consult the .lightweight instancing discussion in RixShadingPlugin

https://rmanwiki.pixar.com/display/REN22/RixShadingContext#RixShadingContext-evalparam
https://rmanwiki.pixar.com/display/REN22/RixShadingContext#RixShadingContext-getprimvar
https://rmanwiki.pixar.com/display/REN22/RixShadingContext#RixShadingContext-getprimvar
https://rmanwiki.pixar.com/display/REN22/RixShadingPlugin#RixShadingPlugin-lightweightinstance

 is also passed two parameters that can be used as to optimize the calculation. is a BeginScatter() hints RixBXLobeTraits const &lobesWanted
description of the that the renderer expects to generate or evaluate; this parameter can be used to avoid any computations not necessary for Bxdf lobes
the requested lobes. will take either the value RixSCShadingMode k_RixSCScatterQuery, indicating that the factory should construct a Bxdf for
scattering on the surface, or , indicating that a Bxdf should be constructed for scattering on the inside of a volume. k_RixSCVolumeScatterQuery

RixBxdfFactory::BeginOpacity()

In certain cases, integrators may also call to retrieve a object. should be RixBxdfFactory::BeginOpacity() RixOpacity BeginOpacity
implemented in a similar fashion to , except that will be only be invoked by the renderer in narrower constraints: either for presence and BeginScatter()
opacity. As such, any inputs to the factory that do not affect presence nor opacity need not be evaluated. Furthermore, the can be RixSCShadingMode
examined to further narrow down the inputs; it will take either the value or .k_RixSCPresenceQuery k_RixSCOpacityQuery

RixBxdfFactory::BeginInterior()

Bxdfs that have interesting volumetric interior properties need to implement the method, as well as an associated BeginInterior() RixVolumeIntegr
. Please consult for more information.ator Writing Volume Integrators

Instance Hints

Bxdfs that require special opacity handling or support interior shading need to indicate their support for these capabilities via an . Most Bxdfs instance hint
do not require such, and should simply implement in their factory a trivial implementation of which simply returns GetInstanceHints() k_TriviallyOp

. Bxdfs that do modulate opacity and/or require interior shading are required to override the method and return the aque GetInstanceHints()
appropriate bits in to the renderer in order to trigger calls to and .InstanceHints BeginOpacity BeginInterior

As a further optimization, Bxdfs that deal with opacity or interiors may choose to change their behavior based upon their instance parameters. For
example, they may opt out of opacity entirely if they can prove via inspection of the parameters that the intended result is equivalent to opaque. Bxdfs that
choose to do so should "bake" this awareness into their instance data at the time of and inspect this instance data within the CreateInstanceData() Ge

 implementation.tInstanceHints()

Note that at the time of , like other shading plugins, Bxdfs are unable to inspect the values of pattern network inputs; therefore, in CreateInstanceData
cases these inputs are provided (i.e: returns) the Bxdf may have no choice but to RixParameterList::GetParamInfo() k_RixSCNetworkValue
defer inspection of the inputs until or . At that time, those methods may then choose to return NULL instead.BeginOpacity() BeginInterior()

RixBxdf

Once a object is obtained, the integrator may invoke the following methods:RixBxdf

RixBxdf::GetEvaluateDomain() to figure out the domain over which the Bxdf evaluate samples;
RixBxdf::GenerateSample() to generate samples of the bxdf function, for of the shading context;one sample each point
RixBxdf::EvaluateSample() to evaluate the bxdf function, for of the shading context;one direction each point
RixBxdf::EvaluateSamplesAtIndex() to evaluate the bxdf function, for a of the shading context;one-or-many directions given point
RixBxdf::EmitLocal() to retrieve the bxdf's local emission.

The primary entry points operate on a collection of shading points () in order to reasonably maximize shading coherency RixBxdf RixShadingContext
and support SIMD computation. Integrators rely on the 's ability to generate and evaluate samples across the entire collection of points. Sample RixBxdf
evaluation may be performed in an variant using , and a variant via all-points-one-sample EvaluateSample() 1-point-n-samples EvaluateSamplesAt

. Generation, however, is constrained to . Evaluation typically has different requirements (e.g. for making connections in a Index() all-points-one-sample
bidirectional integrator), whereas generation typically benefits from being performed all points at once.

The methods above are expected to return quantities for each point of the shading context originally given to RixBxdf RixBxdfFactory::
, excepting , that operates on a single point of the shading context, evaluating the bxdf BeginScatter() RixBxdf::EvaluateSamplesAtIndex()

function for one or many directions.

In order to maintain physical correctness, bxdfs are expected to conserve energy and obey the Helmholtz reciprocity principle. Care should be taken so
that RixBxdf::GenerateSample(), RixBxdf::EvaluateSample() and RixBxdf::EvaluateSamplesAtIndex() return consistent results. This
allows bxdf plugins to be compatible with different rendering techniques such as unidirectional path tracing, , and bidirectional path tracing photon mapping

.vertex connection merging (VCM)

Sample Generation

The function has the following input parameters: , , and random number generator .GenerateSample() transportTrait lobesWanted rng

The tells the Bxdf the subset of light transport to consider: direct illumination, indirect illumination, or both. transportTrait
lobesWanted specifies what are requested, for example specular reflection, diffuse transmission, etc. lobes
rng should be called to generate ; such samples typically reduce noise and improve convergence compared to using well-stratified samples
uniform random samples.

The function has the following output parameters (results): , , , , , GenerateSample() lobeSampled directions weights forwardPdfs reversePdfs
and . compTrans All results are arrays with one value per sample point.

 is similar to the input , and specifies which was actually sampled. lobeSampled lobesWanted lobe Bxdfs must respect the atransportTrait
nd request and indicate which class of lobe is associated with each sample by setting for each generated sample. lobesWanted lobesSampled

https://rmanwiki.pixar.com/display/REN22/Bxdf+Lobes
https://rmanwiki.pixar.com/display/REN22/Writing+Volume+Integrators
https://rmanwiki.pixar.com/display/REN22/RixShadingPlugin#RixShadingPlugin-lightweightinstance
https://en.wikipedia.org/wiki/Helmholtz_reciprocity
https://en.wikipedia.org/wiki/Path_tracing
https://en.wikipedia.org/wiki/Path_tracing#Bidirectional_path_tracing
https://en.wikipedia.org/wiki/Photon_mapping
http://iliyan.com/publications/VertexMerging
https://rmanwiki.pixar.com/display/REN22/Bxdf+Lobes
https://rmanwiki.pixar.com/display/REN22/Generating+well-stratified+samples+using+RixRNG
https://rmanwiki.pixar.com/display/REN22/Bxdf+Lobes

If and only if the bxdf is unable to generate a requested sample, then should be marked as invalid by calling ;lobesSampled SetValid(false)
for example, if the argument requests a specific lobe (e.g., diffuse reflection) that the Bxdf does not support because the Bxdf only lobesWanted
supports glossy reflections, then should be called. However, if it is possible to generate the requested lobesSampled[i].SetValid(false)
samples, then should not be marked invalid and should instead be set to the sampled lobe for each point in the shading context. lobesSampled

When generating a Bxdf sample, you can also run into corner cases (often legitimate cases) where a valid sample cannot be generated. For
instance, if the camera ray hits the backside of a single-sided object, a valid sample cannot be generated. Therefore, the for this lobeSampled
camera ray should also be marked as invalid in this case by calling SetValid(false).

If an invalid sample is returned to the integrator, the integrator will terminate the ray and avoid any further computation. Bxdfs that do not scatter
light (e.g.) should also mark all samples as invalid.PxrConstant

 is the generated ray direction vectors; these directions be unit length. directions must
 is a color per sample indicating that sample's weight. weights

 should account for light moving from the L to V direction, whereas forwardPdfs reversePdfs account for the opposite (from V to L). Bxdfs
should always provide both pdf values for integrators to use. Bxdfs that do not scatter light (e.g. PxrConstant) should set both pdfs to zero.

 is an optional result which can be used to indicate transmission color; this will be used as alpha in compositing. A bxdf should check compTrans
that is not NULL before assigning to it. compTrans

As an example, a purely Lambertian diffuse bxdf should loop over the sample points and for each sample point set the result values as follows: set lobeSa
 to diffuse reflection, set the reflection direction to a randomly generated direction chosen with a cosine distribution on the hemisphere defined by mpled

the surface normal (using a well-stratified 2D "random" sample value generated by calling the provided random number generator), set the weight to the
diffuse surface albedo color times dot(Nn, Ln) divided by pi, set the forward pdf to dot(Nn, Ln) divided by pi, and set the reverse pdf to dot(Nn, Vn). More
details can be found in the source code for the PxrDiffuse bxdf.

Sample Evaluation

The parameters to the function are very similar to : , , , EvaluateSample() GenerateSample() transportTrait lobesWanted rng lobesEvaluated
, , , and . The main difference is that is an array of that the function should directions weights forwardPdfs reversePdfs directions inputs
compute weights and pdfs for.

The EvaluateSamplesAtIndex() function is very similar to , but is used to evaluate multiple samples at the same surface EvaluateSample()
position and normal, but with different illumination directions (Ln). The inputs are the same as for , except that it has two additional EvaluateSample()
inputs: and number of samples . is used to index into built-in variables such as the normal Nn and viewing direction Vn, and index numSamples index nu

 is the number of directions (Ln) to evaluate the bxdf for. The functionality of otherwise is similar to mSamples EvaluateSamplesAtIndex() EvaluateS
, ample() and exists in order to make sample evaluation more efficient in certain light transport settings.

Evaluation Domain

Bxdfs can help integrators converge more quickly by providing hints about the domain over which they need to be integrated (the full domain being the
entire sphere). This is done by the bxdf implementing a function that returns the appropriate RixBxdf::GetEvaluateDomain() RixBXEvaluateDomain
 value. For more information, please see .Bxdf Evaluation Domain

RixOpacity

The renderer will invoke the following methods on :RixOpacity

RixBxdf::GetPresence() to evaluate the .geometry presence
RixBxdf::GetOpacity() to evaluate the .opacity color

Additional Considerations

Bxdf Evaluation Domain

Bxdf Lobes

Non-Opaque Surfaces

Alpha for Compositing

There is a subtle difference between an invalid sample and a black sample. If a camera ray hits a diffuse black surface, the sample will
have zero contribution to the final image despite being valid. It would make sense for the integrator to terminate the ray because
further bounces will not contribute to the final image either, but it is important to splat the black contribution to both the beauty and
alpha channel. Failing to do so might result in missing geometry in the rendered image. An invalid sample on the other hand, should
not only be terminated but also ignored for splatting purposes.

https://rmanwiki.pixar.com/display/REN22/Bxdf+Evaluation+Domain
https://rmanwiki.pixar.com/display/REN22/Bxdf+Evaluation+Domain
https://rmanwiki.pixar.com/display/REN22/Bxdf+Lobes
https://rmanwiki.pixar.com/display/REN22/Non-Opaque+Surfaces
https://rmanwiki.pixar.com/display/REN22/Alpha+for+Compositing

	Writing Bxdfs

