Writing Projections

Introduction

This documentation is intended to instruct developers in the authoring of custom projections. Developers should also consult the Ri xPr oj ect i on. h head
er file for complete details. The source code for the Pxr Ot hogr aphi ¢ and Pxr Per spect i ve projection plugins may be found in the pl ugi ns
/ proj ecti on/ si npl e subdirectory of the PixarRenderMan-Examples package.

A projection plugin is used to model camera and lens behavior. These plugins are responsible for taking stratified random samples as input from the
renderer and turning these into primary camera rays.

Ri xPr oj ecti onFactory

Ri xPr oj ecti onFact ory is a subclass of Ri xShadi ngPl ugi n, and therefore shares the same initialization, synchronization, and parameter table logic
as other shading plugins. Projections do not support lightweight instances, and therefore Cr eat el nst anceDat a() should not be overridden as any
created instance data will not be returned to the factory.

The renderer uses the Ri xPr oj ect i onFact ory object by invoking Ri xBxdf Fact ory: : Creat eProj ecti on() toobtaina Ri xProjection. A
description of various options associated with the current render are provided to the factory via the Ri xPr oj ect i onEnvi ronnent &env. This class
includes information about the current format (the width and height of the image in pixels and the pixel aspect ratio), the screen window, the shutter time
values, the near and far clipping planes, and the world to camera transform. Developers are expected to use this information, along with the arguments
supplied to the plugin via the Ri xPar anet er Li st pLi st, to create an instance of Ri xPr oj ect i on that encapsulates the information necessary to
model the desired camera and lens behavior.

Ri xPr oj ecti onEnvi r onment contains one field that can be altered: the deepMet ri c field. This is used to indicate to the renderer the depth metric
used for computing Z values when rendering deep output. The default value of k_caner aZ indicates the renderer should use the distance strictly in the Z
axis and can assume that all camera rays go forward in the +Z direction, while k_r ayLengt h indicates that the distance should be measured along the
ray direction, as the rays may be go in either the -Z or +Z direction. All other fields on Ri xPr oj ect i onEnvi r onment should be considered read only.

Ri xProj ection
Once a Ri xPr oj ect i on object is obtained, the renderer will invoke the following methods:
® R xSCDetail Ri xBxdf:: GetProperty(ProjectionProperty property, void const** result)

Projection plugins will be queried via this method at the beginning of rendering for properties that are of interest to the renderer. The value of the
property is passed back to the renderer via the r esul t parameter. These properties are invariant during the frame (i.e. they are options). The
current list of properties include:

© k_Di ci ngH nt : The plugin should return an enum Di ci ngHi nt indicating the general strategy the renderer should use to dice
geometry. Di ci ngHi nt takes one of three values: k_Or t hogr aphi c, k_Per specti ve, and k_Spheri cal , and should be set to the
type of camera projection that is closest to the one being implemented in the projection plugin. Not setting this property correctly means
the renderer may underdice or overdice geometry in the scene, which may impair performance or lead to visual artifacts.

O k_Fi el dOf Vi ew: In conjunction with k_Di ci ngHi nt returning a value of k_Per specti ve or k_Spheri cal , the plugin should return
a floating point value indicating the field of view of the projection in degrees. This value is used as a hint to the renderer for dicing
geometry purposes. Note that the projection plugin itself is still responsible for actually implementing a camera model that takes into
account this field of view.

© k_FStop, k_Focal Length, k_Focal D stance: The plugin describes the desired depth of field (defocus) settings to the renderer.
All three properties are floats. If the projection plugin returns values for these properties, the renderer will use them as part of the
computation for the initial ray directions supplied to the projection plugin.

As all of these properties are invariant during the frame, Projection plugins should return k_Ri xSCUni f or mfor any supported properties,
otherwise they should return k_Ri xSCl nval i dDet ai | .

® void Ri xBxdf::Project (R xProjectionContext &Ctx)

The Pr oj ect method is the primary entry point for the plugin. The plugin is primarily responsible for taking the input (screen and lens
samples) and mapping these to the output (camera rays and tint). Both the input and output are encapsulated in the Ri xPr oj ect i onCont ext
class. The fields of this class are as follows:

© int nunRays: The number of rays that the projection plugin is expected to compute. All inputs and outputs on the Ri xPr oj ect i onCon
t ext class are sized to this number.

© Rt Poi nt2 const *screen: This input contains the screen samples in screen space, which is a 2D coordinate system where X
typically has the range [-aspect, aspect] and Y has the range [-1, 1], where aspect is the screen aspect ratio. The exact values of these
coordinates are determined by the format, the screen, and crop window settings supplied to the renderer.

© Rt Point2 const *lens, *aperture: The lens samples are the raw canonical samples with stratified distribution in the [0, 1), [0, 1)
unit square. The aperture samples are the lens samples warped into a distribution in the [-1, 1], [-1, 1] square by the renderer's depth of
field calculations. These calculations will be determined by the description of the aperture supplied to the renderer as part of the scene
description. If your plugin does not want to compute depth of field effects, it may choose to ignore these inputs.

o float *tinme:The time samples are the raw stratified samples distributed in the [0, 1) range, where 0 is interpreted as the shutter
opening time and 1 is the shutter closing time. The renderer computes a distribution of these values according to the shutter opening
description supplied as part of the scene description. Projection plugins may also alter these time values (e.g., for rolling shutter or
strobe effects), so long as they remain in the [0, 1) range.

© Rt RayGeonetry *rays: The primary output of a projection plugin. The renderer will initialize these rays with values based on the built-
in default projection. Plugins are expected to use the inputs above, plus any information from the initial Ri xPar armet er Li st pLi st to
override the ori gi n, di recti on, ori gi nRadi us, and r ay Spr ead fields of the ray to model the desired camera and lens behavior.

https://rmanwiki.pixar.com/display/REN22/RixShadingPlugin
https://rmanwiki.pixar.com/display/REN22/RixShadingPlugin#RixShadingPlugin-initialization
https://rmanwiki.pixar.com/display/REN22/RixShadingPlugin#RixShadingPlugin-synchronization
https://rmanwiki.pixar.com/display/REN22/RixShadingPlugin#RixShadingPlugin-getparamtable
https://rmanwiki.pixar.com/display/REN22/RixShadingPlugin
https://rmanwiki.pixar.com/display/REN22/Bokeh
https://rmanwiki.pixar.com/display/REN22/Shutter
https://rmanwiki.pixar.com/display/REN22/Shutter

Plugins can optionally also override the mi ndi st and maxdi st fields for any desired clipping effects. All ray properties are defined in
terms of camera space, with the camera centered at the origin looking down the +Z axis. Directions should always be unit normalized or

set to zero. Rays with a zero direction vector will be culled.
Rt Col or RGB *ti nt: An optional tint which is applied to the beauty channel of shaded rays prior to pixel filtering. Defaults to white (1,

1, 1) indicating that the values should be unchanged. Projection plugins can change the tint value to create vignetting, chromatic
aberration, spectral bokeh, or other effects.

	Writing Projections

