RixShadingPlugin

Introduction
Initialization
Parameter Table
Synchronization
Lightweight instancing
Dynamic Parameters
Installation

Creating an .Args File

Introduction

Ri xShadi ngPl ugi n is the base class for Ri xBxdf Fact ory, R xDi spl acenent Fact ory, Ri xDi spl ayFilter,Ri xI ntegrator, Ri xLightFilter
, Ri xLi ght Fact ory, R xPattern, R xProj ection,and R xSanpl eFi | t er. These are plugins that implement services for the renderer.

Here, it is important to distinguish between two types of plugins: ones that need to create short-lived lightweight instances during the course of a render,
and ones that do not. Ri xBxdf , Ri xDi spl acenent, and Ri xLi ght represent lightweight instances that may be created many times during the course
of a single render, and therefore are not directly subclasses of Ri xShadi ngPl ugi n. Instead, instancees of those classes are returned by the appropriate
Factory (e.g. Ri xBxdf Fact ory), with the Factory itself being the subclass of Ri xShadi ngPI ugi n.

Ri xI ntegrator, R xDi spl ayFilter, R xLightFilter, R xPattern, R xProjection,andRi xSanpl eFi | ter do notcreate many lightweight
instances. As such, these classes are directly subclasses of Ri xShadi ngPl ugi n.

All Ri xShadi ngPl ugi ns share common methods related to initialization, synchronization with the renderer, and management of lightweight instances.

Initialization

In order to initialize the plugin, the renderer will call I ni t () once. Even if the plugin is evoked multiple times during the render with different arguments, | n
it () willstill be called only once during the lifetime of the render. The Ri xCont ext parameter can be used by the plugin to request any Ri xI nt er f aces
services provided by the renderer. Any expensive memory allocations or operations that can be reused during the lifetime of the plugin can be performed
in this routine. Upon successful initialization, this routine should return a zero status.

Fi nal i ze() is the companion to I ni t (), called at the end of rendering with the expectation that any data allocated within the I ni t () implementation
will be released.

Parameter Table

All shading plugins are expected to return a description of their input and output parameters via the Get Par anilabl e() method. This returns a pointer to
an array of Ri xSCPar anl nf o, containing one entry for each input and output parameter, as well as an extra empty entry to mark the end of the table. This
parameter table is used by the renderer to ensure proper type checking and validate the connections of upstream and downstream nodes. As such, each
entry in the table should set a name, a type (Ri xSCType enumeration), detail (varying vs uniform, Ri xSCDet ai | enumeration), and access (input vs
output, Rl xSCAccess enumeration). These declarations also need to be kept in sync with the associated .args file.

For an example of usage, consider a pattern plugin which returns a color. The resultC output parameter is a color, so it is defined in the parameter table as:

Ri xSCPar am nfo("resul tC', k_Ri xSCCol or, k_Ri xSCQut put)

A float input parameter named density can be defined as:

Ri xSCPar am nf o("density", k_Ri xSCFl oat)

While a float[16] input parameter named placementMatrix can be defined as:

Ri xSCPar anml nf o(" pl acenment Matri x", k_Ri xSCFl oat, k_Ri xSCl nput, 16)

The full implementation of Get Par anTTabl e() for this plugin would look something like this:

https://rmanwiki.pixar.com/display/REN22/Writing+Bxdfs
https://rmanwiki.pixar.com/display/REN22/Writing+Displacements
https://rmanwiki.pixar.com/display/REN22/Writing+Display+Filters
https://rmanwiki.pixar.com/display/REN22/Writing+Integrators
https://rmanwiki.pixar.com/display/REN22/Writing+Light+Filters
https://rmanwiki.pixar.com/display/REN22/Writing+Lights
https://rmanwiki.pixar.com/display/REN22/Writing+Patterns
https://rmanwiki.pixar.com/display/REN22/Writing+Projections
https://rmanwiki.pixar.com/pages/viewpage.action?pageId=45744676
https://rmanwiki.pixar.com/display/REN22/Writing+Bxdfs
https://rmanwiki.pixar.com/display/REN22/Writing+Displacements
https://rmanwiki.pixar.com/display/REN22/Writing+Lights
https://rmanwiki.pixar.com/display/REN22/Writing+Bxdfs
https://rmanwiki.pixar.com/display/REN22/Writing+Integrators
https://rmanwiki.pixar.com/display/REN22/Writing+Display+Filters
https://rmanwiki.pixar.com/display/REN22/Writing+Light+Filters
https://rmanwiki.pixar.com/display/REN22/Writing+Patterns
https://rmanwiki.pixar.com/display/REN22/Writing+Projections
https://rmanwiki.pixar.com/pages/viewpage.action?pageId=45744676
https://rmanwiki.pixar.com/display/REN22/Args+File+Reference

Ri xSCPar aml nfo const *
M/Pat t er n: : Get Par aniTabl e()

{

static Ri xSCParaninfo s_ptable[] =

{
/] outputs
Ri xSCParam nfo("resultC', k_Ri xSCCol or, k_Ri xSCQut put),
/1 inputs
Ri xSCPar aml nf o("density", k_Ri xSCFl oat),
Ri xSCPar am nf o(" pl acenent Matri x", k_Ri xSCFl oat, k_Ri xSCl nput, 16),
Ri xSCParam nfo(), // end of table
b

return &s_ptable[0];

The ordinal position of a parameter in the parameter table is the integer par anml d used to evaluate parameter inputs using the Ri xShadi ngCont ext : :
Eval Par am method. Because these need to be kept in sync, it is recommended that you create a parameter enumeration (a private enumtype) to keep
track of the order that your parameters were created in the table. The enumeration can be used later on when calling Ri xShadi ngCont ext : : Eval Par am
in the body of the shader. Following the three parameter table entries above:

enum par anl d

{

k_resul tC=0, // output
k_density,

k_pl acenent Matri x,
k_nunPar ans

In order to facilitate the reuse of the same parameter enumeration for pattern output computation, it is highly recommended that all outputs be
placed at the beginning of the parameter table.

Synchronization

The Synchr oni ze() routine allows the plugin to respond to synchronization signals delivered by the renderer. The renderer may provide additional
information to the plugin via the input parameter Ri xPar anet er Li st . These signals include:

k_Ri xSCRender Begi n: The renderer is being initialized.

k_Ri xSCRender End: The renderer is about to end.

k_Ri xSCI nst anceEdi t : Currently unused.

k_Ri xSCCancel : Currently unused.

k_Ri xSCCheckpoi nt Recover : A signal that the renderer is about to restart rendering from a checkpoint. The parameter list will contain a single

constant integer "increment” which contains the increment value from which the renderer will restart.

® k_Ri xSCCheckpoi nt Wi t e: A signal that the renderer is about to write a checkpoint. The parameter list will contain two values: a constant
integer "increment" indicating the increment value the renderer will write, and a constant string "reason” which contains one of three values:
"checkpoint”, "exiting", or “finished", indicating why the renderer is writing the checkpoint.

® k_Ri xSCl ncrenent Barri er: A signal that the rendering of an new increment is about to begin. This signal will only be received if the integrator

has set want sl ncr ement Barri er to true in the Ri x| nt egr at or Envi r onnent . The parameter list will contain a single constant integer

"increment” which contains the increment value the renderer is about to render.

Lightweight instancing

For shading plugin types which support the creation of multiple lightweight instance classes not derived from Ri xShadi ngPl ugi n (i.e. R xBxdf , R xDi s
pl acenent, and Ri xLi ght), the renderer can potentially create many, many instances over the course of the render. Here, the term instance is
unfortunately overloaded, and it is important to differentiate between: an instance of a shading plugin as defined by the unique set of parameters given to
the material definition, and a C++ instance which involves an actual memory allocation, construction, and destruction of an object. Over the lifetime of a
render there can be a one to many relationship between the former and the latter, and for performance reasons, it is important to keep the cost of the
creation of the latter C++ objects low. In order to reduce the cost of these instantiations, the renderer offers the ability to track custom instance data with
every shading plugin instance that can be shared and reused amongst all the C++ objects that share the same shading plugin instance.

https://rmanwiki.pixar.com/display/REN22/RixShadingContext#RixShadingContext-evalparam
https://rmanwiki.pixar.com/display/REN22/RixShadingContext#RixShadingContext-evalparam
https://rmanwiki.pixar.com/display/REN22/RixShadingContext#RixShadingContext-evalparam
https://rmanwiki.pixar.com/display/REN22/Writing+Bxdfs
https://rmanwiki.pixar.com/display/REN22/Writing+Displacements
https://rmanwiki.pixar.com/display/REN22/Writing+Displacements
https://rmanwiki.pixar.com/display/REN22/Writing+Lights
https://rmanwiki.pixar.com/display/REN22/Writing+Patterns#WritingPatterns-ComputeOutputParams

The shading plugin can create private instance data using the Cr eat el nst anceDat a() method. Instance data would typically be computed from the
unique evocation parameters, supplied to Cr eat el nst anceDat a via the Ri xPar anet er Li st cl ass. This occurs when the shading plugin instance is
created for the first time from those parameters, which is at the time the material definition is created (i.e. very early on in a render). Using these
parameters, plugins may bake a cached understanding of their behavior, requirements, or even precomputed results into a private representation that the
renderer will automatically track with the instance and supply back to the plugin methods. This allows the plugin to cache and therefore avoid repeated
computations with each new lightweight instantiation.

If the shading plugin does create instance data, it should be stored in the data field of the | nst anceDat a struct. If the data requires non-trivial deletion,
the f r eef unc field of the | nst anceDat a struct should be set to a function that the renderer will invoke when the plugin instance will no longer be
needed. A trivial implementation of Cr eat el nst anceDat a() produces no instance data and returns a non-zero value.

Any instance data that is created will be automatically returned to the shading plugin methods by the renderer when the lightweight instance is created - for
example, when Ri xBxdf Fact ory: : Begi nScat t er () is invoked to create a Ri xBxdf . The implementation of Begi nScat t er () is now free to use this
instance data to reduce the cost of creating the associated Ri xBxdf .

The Ri xPar anet er Li st class allows for the evaluation of the plugin instance parameters via the Eval Par am() method. To aid in this, it allows for the
querying via Ri xPar amet er Li st : : Get Par aml nf o() of whether the parameters have been unset (and are therefore at their default value), set as a
uniform value, or are part of a network connection, i.e. the parameter is computed by an upstream node in the shading graph. A network connection is
understood to be a varying quantity, and its value cannot be evaluated at the time that Cr eat el nst anceDat a is evoked; this is why Eval Par am() will
return k_Ri xSCl nval i dDet ai | if the parameter is a network connection. Otherwise, Eval Par an{) can be used to get an understanding of the uniform,
non-varying parameters that are passed to the shading instance, and these can be used to perform any precomputations as needed.

As an example of usage of instance data, consider the Pxr Di f f use bxdf. Although it is a fairly trivial bxdf, it does handle presence and opacity, and the
renderer passes instance data to the Ri xBxdf interface in order to get an understanding of the requirements for presence and opacity. In the following
code, Pxr Di f f use checks its own presence parameter to see if it is a connection, knowing that its Ar gs file only allows presence to be set to a default
value (and therefore is trivially fully opaque) or is connected (and therefore requires the renderer to perform presence calculations). If it is connected, then
it sets the instance data to be the same | nst anceHi nt s bitfield that is requested by the renderer from Ri xBxdf : : Get | nst anceHi nt s.

pli st ->Get Param nf o(k_presence, &yp, &cnxl);
i f(cnxl == k_Ri xSCNet wor kVal ue)

{
if (cachePresence == 0)
{
req | = k_Conput esPresence;
}
el se
{
req | = k_Conput esPresence | k_PresenceCanBeCached;
}
}

For a more complicated example of instance data usage, consider the Pxr Di rt pattern. Its instance data routine caches the values of many uniform
parameters and reuses them in Conmput eQut put Par ans() , knowing that its Args file prohibits those parameters from being set to network connections.

Data *data = static_cast<Data*>(instanceData->data);

dat a- >nunBSanpl es = 4;

dat a->di stribution = k_distributionCosine;
dat a- >cosi neSpread = 1. 0f;

data->falloff = 0.0f;

dat a- >maxDi st ance = 0. 0f;

data->direction = k_directionCutside;
data->raySpread = 1.0f;

par ans- >Eval Par am(k_nunBSanpl es, 0, &data->nunfanpl es);

dat a- >nunBanpl es = Ri xMax(1, data->nunSanpl es);

par ans- >Eval Paran(k_di stribution, 0, &data->distribution);
par ans- >Eval Par anm(k_cosi neSpread, 0, &data->cosi neSpread);
params- >Eval Param(k_fall off, 0, &data->falloff);

par ams- >Eval Par am(k_nmaxDi st ance, 0, &data->naxDi stance);
par anms- >Eval Paranm(k_direction, 0, &data->direction);

Ri xPat t er n plugins do not fully follow the lightweight instancing pattern because they do not have an associated factory object, and do not
create lightweight C++ objects because patterns are generally not expected to retain state. However, they do support instance data, and the
renderer will return this instance data every time output is requested from the pattern plugin, with the understanding that any expensive
computation that can be performed based on an understanding of the uniform parameters can be reused on each invocation of Conput eQut pu
t Parans().

https://rmanwiki.pixar.com/display/REN22/Writing+Patterns

Dynamic Parameters

A plugin can create its parameter table dynamically based on the parameters provided to each instance of the plugin. This dynamically created table is
created using the Cr eat el nst anceDat a() method, and should be saved in the par ant abl e member of the | nst anceDat a, along with a
corresponding f r eef unc() routine. Generally, static interfaces should be preferred over dynamic interfaces due to their extra memory expense. If the pa
r ant abl e member remains null, all instances will share the parameter table returned by Get Par anifabl e() . In order to prevent the renderer from
filtering out dynamic parameters as bad inputs, a plugin that is using a dynamically created table should have a k_Ri xSCAnyType entry in its plugin
parameter table.

Cr eat el nst anceDat a() may be called in multiple threads, and so its implementation should be re-entrant and thread-safe.

Installation

RenderMan will search for shading plugins on demand, under the ri xpl ugi n searchpath. Custom shading plugins can be installed in a directory that can
either be appended to the / ri xpl ugi npat h settings in Rendermn.ini; or the directory can be appended to the ri xpl ugi n search path which is emitted
by the bridge.

Creating an .Args File

If you would like RenderMan for Maya or RenderMan for Katana to recognize your plugin and provide a user interface for changing input parameters and
connecting output parameters to other nodes, then you will need to create an args file for your shading plugin. The args file defines the input and output
parameters in XML so that tools like RMS or Katana can easily read them, discover their type, default values, and other information used while creating the
user interface for the pattern node. Please consult the Args File Reference for more information.

https://rmanwiki.pixar.com/display/REN22/Rendermn.ini
https://rmanwiki.pixar.com/display/REN22/Args+File+Reference

	RixShadingPlugin

