
RixShadingPlugin

Introduction
Initialization
Parameter Table
Synchronization
Lightweight instancing
Dynamic Parameters
Installation
Creating an .Args File

Introduction

RixShadingPlugin is the base class for , , , , RixBxdfFactory RixDisplacementFactory RixDisplayFilter RixIntegrator RixLightFilter
, , , , and . These are plugins that implement services for the renderer.RixLightFactory RixPattern RixProjection RixSampleFilter

Here, it is important to distinguish between two types of plugins: ones that need to create short-lived lightweight instances during the course of a render, 
and ones that do not.  , , and  represent lightweight instances that may be created many times during the course RixBxdf RixDisplacement  RixLight
of a single render, and therefore are not directly subclasses of . Instead, instancees of those classes are returned by the appropriate RixShadingPlugin
Factory (e.g. ), with the Factory itself being the subclass of .RixBxdfFactory RixShadingPlugin

RixIntegrator, , , , and do not create many lightweight RixDisplayFilter RixLightFilter , RixPattern RixProjection  RixSampleFilter
instances. As such, these classes are directly subclasses of .RixShadingPlugin

All  share common methods related to initialization, synchronization with the renderer, and management of lightweight instances.RixShadingPlugins

Initialization

In order to initialize the plugin, the renderer will call  once. Even if the plugin is evoked multiple times during the render with different arguments, Init() In
 will still be called only once during the lifetime of the render. The   parameter can be used by the plugin to request any   it() RixContext RixInterfaces

services provided by the renderer. Any expensive memory allocations or operations that can be reused during the lifetime of the plugin can be performed 
in this routine. Upon successful initialization, this routine should return a zero status.

Finalize() is the companion to , called at the end of rendering with the expectation that any data allocated within the  implementation Init() Init()
will be released.

Parameter Table

All shading plugins are expected to return a description of their input and output parameters via the   method. This returns a pointer to GetParamTable()
an array of  , containing one entry for each input and output parameter, as well as an extra empty entry to mark the end of the table. This RixSCParamInfo
parameter table is used by the renderer to ensure proper type checking and validate the connections of upstream and downstream nodes. As such, each 
entry in the table should set a name, a type (  enumeration), detail (varying vs uniform,  enumeration), and access (input vs RixSCType RixSCDetail
output,  enumeration). These declarations also need to be kept in sync with the associated .RixSCAccess .args file

For an example of usage, consider a pattern plugin which returns a color. The   output parameter is a color, so it is defined in the parameter table as:resultC

RixSCParamInfo("resultC", k_RixSCColor, k_RixSCOutput)

A float input parameter named   can be defined as:density

RixSCParamInfo("density", k_RixSCFloat)

While a float[16] input parameter named   can be defined as:placementMatrix

RixSCParamInfo("placementMatrix", k_RixSCFloat, k_RixSCInput, 16)

The full implementation of   for this plugin would look something like this:GetParamTable()

https://rmanwiki.pixar.com/display/REN22/Writing+Bxdfs
https://rmanwiki.pixar.com/display/REN22/Writing+Displacements
https://rmanwiki.pixar.com/display/REN22/Writing+Display+Filters
https://rmanwiki.pixar.com/display/REN22/Writing+Integrators
https://rmanwiki.pixar.com/display/REN22/Writing+Light+Filters
https://rmanwiki.pixar.com/display/REN22/Writing+Lights
https://rmanwiki.pixar.com/display/REN22/Writing+Patterns
https://rmanwiki.pixar.com/display/REN22/Writing+Projections
https://rmanwiki.pixar.com/pages/viewpage.action?pageId=45744676
https://rmanwiki.pixar.com/display/REN22/Writing+Bxdfs
https://rmanwiki.pixar.com/display/REN22/Writing+Displacements
https://rmanwiki.pixar.com/display/REN22/Writing+Lights
https://rmanwiki.pixar.com/display/REN22/Writing+Bxdfs
https://rmanwiki.pixar.com/display/REN22/Writing+Integrators
https://rmanwiki.pixar.com/display/REN22/Writing+Display+Filters
https://rmanwiki.pixar.com/display/REN22/Writing+Light+Filters
https://rmanwiki.pixar.com/display/REN22/Writing+Patterns
https://rmanwiki.pixar.com/display/REN22/Writing+Projections
https://rmanwiki.pixar.com/pages/viewpage.action?pageId=45744676
https://rmanwiki.pixar.com/display/REN22/Args+File+Reference


RixSCParamInfo const *
MyPattern::GetParamTable()
{
    static RixSCParamInfo s_ptable[] =
    {
        // outputs
        RixSCParamInfo("resultC", k_RixSCColor, k_RixSCOutput),
        // inputs
        RixSCParamInfo("density", k_RixSCFloat),
        RixSCParamInfo("placementMatrix", k_RixSCFloat, k_RixSCInput, 16),
        RixSCParamInfo(), // end of table
    };
    return &s_ptable[0];
}

The ordinal position of a parameter in the parameter table is the integer   used to evaluate parameter inputs using the paramId RixShadingContext::
method. Because these need to be kept in sync,  EvalParam it is recommended that you create a parameter enumeration (a private  type) to keep enum

track of the order that your parameters were created in the table. The enumeration can be used later on when calling   RixShadingContext::EvalParam
 in the body of the shader. Following the three parameter table entries above:

enum paramId
{
    k_resultC=0, // output
    k_density,
    k_placementMatrix,
    k_numParams
};

Synchronization

The   routine allows the plugin to respond to synchronization signals delivered by the renderer. The renderer may provide additional Synchronize()
information to the plugin via the input parameter . These signals include:RixParameterList

k_RixSCRenderBegin: The renderer is being initialized.
k_RixSCRenderEnd: The renderer is about to end.
k_RixSCInstanceEdit: Currently unused.
k_RixSCCancel: Currently unused.
k_RixSCCheckpointRecover: A signal that the renderer is about to restart rendering from a checkpoint. The parameter list will contain a single 
constant integer "increment" which contains the increment value from which the renderer will restart.
k_RixSCCheckpointWrite: A signal that the renderer is about to write a checkpoint. The parameter list will contain two values: a constant 
integer "increment" indicating the increment value the renderer will write, and a constant string "reason" which contains one of three values: 
"checkpoint", "exiting", or "finished", indicating why the renderer is writing the checkpoint.
k_RixSCIncrementBarrier: A signal that the rendering of an new increment is about to begin. This signal will only be received if the integrator 
has set  to true in the . The parameter list will contain a single constant integer wantsIncrementBarrier RixIntegratorEnvironment
"increment" which contains the increment value the renderer is about to render.

Lightweight instancing

For shading plugin types which support the creation of multiple lightweight instance classes not derived from  (i.e.  , RixShadingPlugin RixBxdf RixDis
, and  ), the renderer can potentially create many, many instances over the course of the render. Here, the term instance is placement RixLight

unfortunately overloaded, and it is important to differentiate between: an  as defined by the unique set of parameters given to instance of a shading plugin
the material definition, and a  which involves an actual memory allocation, construction, and destruction of an object. Over the lifetime of a C++ instance
render there can be a one to many relationship between the former and the latter, and for performance reasons, it is important to keep the cost of the 
creation of the latter C++ objects low. In order to reduce the cost of these instantiations, the renderer offers the ability to track custom   with instance data
every shading plugin instance that can be shared and reused amongst all the C++ objects that share the same shading plugin instance.

In order to facilitate the reuse of the same parameter enumeration for , it is highly recommended that all outputs be pattern output computation
placed at the beginning of the parameter table.

https://rmanwiki.pixar.com/display/REN22/RixShadingContext#RixShadingContext-evalparam
https://rmanwiki.pixar.com/display/REN22/RixShadingContext#RixShadingContext-evalparam
https://rmanwiki.pixar.com/display/REN22/RixShadingContext#RixShadingContext-evalparam
https://rmanwiki.pixar.com/display/REN22/Writing+Bxdfs
https://rmanwiki.pixar.com/display/REN22/Writing+Displacements
https://rmanwiki.pixar.com/display/REN22/Writing+Displacements
https://rmanwiki.pixar.com/display/REN22/Writing+Lights
https://rmanwiki.pixar.com/display/REN22/Writing+Patterns#WritingPatterns-ComputeOutputParams


The shading plugin can create private instance data using the CreateInstanceData() method. Instance data would typically be computed from the 
unique evocation parameters, supplied to CreateInstanceData via the RixParameterList class. This occurs when the shading plugin instance is 
created for the first time from those parameters, which is at the time the material definition is created (i.e. very early on in a render).  Using these 
parameters, plugins may bake a cached understanding of their behavior, requirements, or even precomputed results into a private representation that the 
renderer will automatically track with the instance and supply back to the plugin methods. This allows the plugin to cache and therefore avoid repeated 
computations with each new lightweight instantiation.

If the shading plugin does create instance data, it should be stored in the data field of the  struct. If the data requires non-trivial deletion, InstanceData
the   field of the  struct should be set to a function that the renderer will invoke when the plugin instance will no longer be freefunc InstanceData
needed. A trivial implementation of   produces no instance data and returns a non-zero value.CreateInstanceData()

Any instance data that is created will be automatically returned to the shading plugin methods by the renderer when the lightweight instance is created - for 
example, when   is invoked to create a . The implementation of   is now free to use this RixBxdfFactory::BeginScatter() RixBxdf BeginScatter()
instance data to reduce the cost of creating the associated .RixBxdf

The   class allows for the evaluation of the plugin instance parameters via the  method. To aid in this, it allows for the RixParameterList EvalParam()
querying via  of whether the parameters have been unset (and are therefore at their default value), set as a RixParameterList::GetParamInfo()
uniform value, or are part of a  , i.e. the parameter is computed by an upstream node in the shading graph. A network connection is network  connection
understood to be a varying quantity, and its value cannot be evaluated at the time that   is evoked; this is why   will CreateInstanceData EvalParam()
return   if the parameter is a network connection. Otherwise,   can be used to get an understanding of the uniform, k_RixSCInvalidDetail EvalParam()
non-varying parameters that are passed to the shading instance, and these can be used to perform any precomputations as needed.

As an example of usage of instance data, consider the   bxdf. Although it is a fairly trivial bxdf, it does handle presence and opacity, and the PxrDiffuse
renderer passes instance data to the  interface in order to get an understanding of the requirements for presence and opacity. In the following RixBxdf
code,   checks its own presence parameter to see if it is a connection, knowing that its  file only allows presence to be set to a default PxrDiffuse Args
value (and therefore is trivially fully opaque) or is connected (and therefore requires the renderer to perform presence calculations). If it is connected, then 
it sets the instance data to be the same   bitfield that is requested by the renderer from  .InstanceHints RixBxdf::GetInstanceHints

    plist->GetParamInfo(k_presence, &typ, &cnx1);
    if(cnx1 == k_RixSCNetworkValue)
    {
        if (cachePresence == 0)
        {
            req |= k_ComputesPresence;
        }
        else
        {
            req |= k_ComputesPresence | k_PresenceCanBeCached;
        }
    }

For a more complicated example of instance data usage, consider the   pattern. Its instance data routine caches the values of many uniform PxrDirt
parameters and reuses them in , knowing that its Args file prohibits those parameters from being set to network connections.ComputeOutputParams()

    Data *data = static_cast<Data*>(instanceData->data);

    data->numSamples = 4;
    data->distribution = k_distributionCosine;
    data->cosineSpread = 1.0f;
    data->falloff = 0.0f;
    data->maxDistance = 0.0f;
    data->direction = k_directionOutside;
    data->raySpread = 1.0f;

    params->EvalParam(k_numSamples, 0, &data->numSamples);
    data->numSamples = RixMax(1, data->numSamples);
    params->EvalParam(k_distribution, 0, &data->distribution);
    params->EvalParam(k_cosineSpread, 0, &data->cosineSpread);
    params->EvalParam(k_falloff, 0, &data->falloff);
    params->EvalParam(k_maxDistance, 0, &data->maxDistance);
    params->EvalParam(k_direction, 0, &data->direction);

RixPattern plugins do not fully follow the lightweight instancing pattern because they do not have an associated factory object, and do not 
create lightweight C++ objects because patterns are generally not expected to retain state. However, they do support instance data, and the 
renderer will return this instance data every time output is requested from the pattern plugin, with the understanding that any expensive 
computation that can be performed based on an understanding of the uniform parameters can be reused on each invocation of ComputeOutpu

.tParams()

https://rmanwiki.pixar.com/display/REN22/Writing+Patterns


Dynamic Parameters

A plugin can create its parameter table dynamically based on the parameters provided to each instance of the plugin. This dynamically created table is 
created using the  method, and should be saved in the  member of the , along with a CreateInstanceData() paramtable InstanceData
corresponding  routine. Generally, static interfaces should be preferred over dynamic interfaces due to their extra memory expense. If the freefunc() pa

 member remains null, all instances will share the parameter table returned by . In order to prevent the renderer from ramtable GetParamTable()
filtering out dynamic parameters as bad inputs, a plugin that is using a dynamically created table should have a  entry in its plugin k_RixSCAnyType
parameter table.

CreateInstanceData() may be called in multiple threads, and so its implementation should be re-entrant and thread-safe.

Installation

RenderMan will search for shading plugins on demand, under the   searchpath. Custom shading plugins can be installed in a directory that can rixplugin
either be appended to the  settings in  ; or the directory can be appended to the   search path which is emitted /rixpluginpath Rendermn.ini rixplugin
by the bridge. 

Creating an .Args File

If you would like RenderMan for Maya or RenderMan for Katana to recognize your plugin and provide a user interface for changing input parameters and 
connecting output parameters to other nodes, then you will need to create an args file for your shading plugin. The args file defines the input and output 
parameters in XML so that tools like RMS or Katana can easily read them, discover their type, default values, and other information used while creating the 
user interface for the pattern node. Please consult the   for more information.Args File Reference

https://rmanwiki.pixar.com/display/REN22/Rendermn.ini
https://rmanwiki.pixar.com/display/REN22/Args+File+Reference

	RixShadingPlugin

