Writing Light Filters

® [ntroduction
® Binding and linking
® Implementing the RixLightFilter interface
© RixLightFilter::Filter()
© RixLightFilter::GetProperty()
o RixLightFilter::GetRadianceModifier()
® [Instance Data
® Running multiple filters

Introduction

This documentation is intended to instruct developers in the authoring of custom light filters. Developers should also consult the Ri xLi ght Fi | t er. h head
er file for complete details.

Light filters change the color of a light after the light has been sampled.

Binding and linking
Light filters are bound to lights like bxdfs are bound to geometry: they obey attribute scoping and the last one specified wins.

Li ghtFilter "PxrGobo" "gobol" "string coordSys" ["Gobol"] "string map" ["ratGid.tx"]
Li ght "PxrPrectLight" "light1l"

Like lights, light filters are enabled by default. Light filters may be selectively enabled using a group membership similar to light linking and ray tracing
subsets. By default, a light filter belongs to a global group and is enabled everywhere. If a filter expresses that it belongs to a named group, it will instead
be disabled by default and enabled for only those geometric primitives that subscribe to the group. Light filter groups are specified through a parameter to
the light filter and reported to the renderer through the light filter Get Pr oper t y() method (see below). For example:

LightFilter "PxrBlocker" "blocker" "string |inkingG oups" ["blockers"]

Attribute "lightfilter" "string subset" ["blockers"]
Sphere ...

Will turn on all light filters in group "blockers" for all lights shining on the sphere. By convention, all of the filters shipped with RenderMan use
"linkingGroups" as the name of the parameter. Both the "linkingGroups" and "lightfilter:subset" strings may be comma-separated lists of group
names. Group name matching is not scoped to a light. Any filter in a matching group on any light active on a given geometric primitive will be enabled.

Implementing the RixLightFilter interface

Light filters implement the RixLightFilter interface found in RixLightFilter.h. RixLightFilter is a subclass of RixShadingPlugin, and therefore shares the
same initialization, synchronization, and parameter table logic as other shading plugins. Therefore to start developing your ownlLight filter, you can
#include "RixLightFilter.h" and make sure your light filter class implements the required methods inherited from the RixShadingPlugin interface: Init(), Finali
ze(), Synchronize(), GetParamTable(), and CreatelnstanceData(). Additionally, your light filter subclass must implement the three methods of the
RixLightFilter interface, Filter(), GetProperty(), and GetRadianceModifier().

Generally, there is one shading plugin instance of a RixLightFilter per bound RiLightFilter (RIB) request. This instance may be active in multiple threads
simultaneously.

The RIX_LIGHTFILTERPLUGINCREATE() macro defines the CreateRixLightFilter() function, which is called by the renderer to create an instance of the
light filter plugin. Generally, the implementation of this method should simply return a new allocated copy of your light filter class. Similarly, the
RIX_LIGHTFILTERPLUGINDESTROY() macro defines the DestroyRixLightFilter() function called by the renderer to delete an instance of the light filter
plugin; a typical implementation of this method is to delete the passed in light filter pointer:

https://rmanwiki.pixar.com/display/REN22/RixShadingPlugin
https://rmanwiki.pixar.com/display/REN22/RixShadingPlugin
https://rmanwiki.pixar.com/display/REN22/RixShadingPlugin
https://rmanwiki.pixar.com/display/REN22/RixShadingPlugin
https://rmanwiki.pixar.com/display/REN22/RixShadingPlugin
https://rmanwiki.pixar.com/display/REN22/RixShadingPlugin
https://rmanwiki.pixar.com/display/REN22/RixShadingPlugin
https://rmanwiki.pixar.com/display/REN22/RixShadingPlugin
https://rmanwiki.pixar.com/display/REN22/RixShadingPlugin
https://rmanwiki.pixar.com/display/REN22/RixShadingPlugin

RI X_LI GHTFI LTERPLUG NCREATE

{
return new MyLightFilter();
}
Rl X_LI GHTFI LTERPLUG NDESTROY
{
delete ((MyLightFilter*)filter);
}

RixLightFilter::Filter()

Filter is where the work is done.

virtual void Filter(
Ri xLi ght Fil ter Context const *IfCtx,
Rt Const Poi nt er i nstanceDat a,
int const nunSanpl es,
int const * shadi ngC x| ndex,
Rt Vector 3 const * tolight,
float const * dist,
float const * lightPdfIllum
Ri xBXLobeWei ghts *contri bution);

Like pattern plugins, light filters are supplied a context. The Ri xLi ght Fi | t er Cont ext is a subset of the Ri xShadi ngCont ext and does not support
full pattern generation (Eval Par an() is not supported). That capability is under consideration for future releases.

Light filtering happens after lighting services has picked which lights will be sampled for each point in a shading context. The Ri xLi ght Fi | t er Cont ext
member variable nunPt s is the number of points in the underlying shading context. Light filters are called on a light-by-light basis, and not all of the points
in a shading context will be getting a sample from a given light. Some may get zero samples, others may get multiple samples. For this reason, the Filter
call is sample-centric: it operates over the samples generated for a given light.

The shadi ngCt xI ndex maps a particular sample back to the point on the shading context for which it was generated.

The three lighting arrays t oLi ght, di st, and | i ght Pdf I | | um are nunSanpl es in length. These are the vector to the light, the distance from the point
on the shading context to the sample point on the light, and the pdf of the sample on the light.

The input/output array contribution contains the lighting contribution distributed into some number of diffuse and specular lobes. For each lobe there are nu
nBSanpl es entries. For instance, to modulate the lighting by a filter that passes only the red channel:

for(int j = 0; j < contribution->Cet NunSpecul ar Lobes(); ++j) {
for(int i = 0; i < nunBanples; ++i) {
contri bution->Get Specul arLobe(j)[i] *= Rt Col or RGB(1.0, 0. 0f,0.0f);
}
}

for(int j = 0; j < contribution->GetNunDiffuseLobes(); ++j) {
for(int i = 0; i < nunBanples; ++i) {
contribution->CGetDiffuseLobe(j)[i] *= Rt Col or RGB(1.0,0.0f,0.0f);
}

RixLightFilter::GetProperty()

https://rmanwiki.pixar.com/display/REN22/RixShadingContext
https://rmanwiki.pixar.com/display/REN22/RixShadingContext#RixShadingContext-evalparam

Ri xSCDet ai | Pxr Gobo: : Get Property(
Rt Const Poi nter instanceData, LightFilterProperty property, void const** result) const

{ nyDat a* data = (nyData*)instanceData;
if (RixLightFilter::k_Linki ngGoups == property)
{ (*result) = &data->m.linki ngG oups;
return k_Ri xSCUni form
1et urn k_Ri xSCl nval i dDet ai | ;
}

Get Property() is an extensible API through which the renderer may query the plugin. The list of valid queries are enumerated in Li ght Fi | t er Pr oper
ty. If a plugin can answer the query, it fillsin resul t and returns k_Ri xSCUni f or m Otherwise Get Pr operty should return k_Ri xSCl nval i dDet ai |
. The example given shows how the plugin returns the unique string for the linking groups to which the light filter belongs.

RixLightFilter::GetRadianceModifier()

bool PxrMLightFilter:: GetRadi anceMdifier(
Fi | t er Radi anceMbdi fi er Property property,
Ri xLi ghtFilterContext const* |fCtx,
Rt Const Poi nter instanceDat a,
float* result) const

*result = mattenuation;
return true;

Get Radi anceModi fi er () returns a single float representing how much the filter modulates the light emitted from a light source. Not all filters attenuate
or amplify the light signal; those plugins would return false and not modify r esul t .

Instance Data

For a detailed discussion of instance data, see lightweight instancing services. When the CreatelnstanceData routine is called, the plugin has access to
the parameter list of the light filter and can create arbitrary data that is stored by the renderer and supplied as the instanceData pointer during filtering. This
should be uniform data that can be accessed by multiple threads simultaneously. Pre-processing the parameter list is an important performance
optimization. A light filter will be invoked for every surface-to-light interaction, and in a production-level shot there can be billions of these events.

As an example, below is the CreatelnstanceData method for PxrLightFilterCombiner. Like bxdfs, light filters can be referenced in arguments to other light
filters. To run multiple light filters, call EvalParam to get pointers to the upstream light filter and it's instance. These are stored and used later during filtering.

http://rmanwiki-test.pixar.com/display/REN22/RixShadingPlugin#RixShadingPlugin-lightweightinstance

struct nyData

{
int arraylLen;
Ri xLightFilter** filters;
Rt Const Poi nter* i nstances;
s
static void rel easel nstanceDat a(Rt Poi nt er dat a)
{
nyData* nd = (nyData*) data;
delete[] md->filters;
del ete[] nd->i nstances;
del ete nd;
}

int PxrLightFilterConbiner::Createl nstanceDat a(
Ri xCont ext &ct x,
char const *handl e,
Ri xPar anet er Li st const *plist,
Ri xShadi ngPl ugi n: : I nstanceDat a *i dat a)

{
Ri xSCType typ;
bool isconnected;
int arraylen;
plist->GetParam nfo(k_nult, & yp, & sconnected, &arraylen);
nyDat a* nydata = new nyDat a;
nydat a- >arraylLen = arrayl en;
nydata->filters = new Ri xLightFilter* [arraylen];
nydat a- >i nstances = new Rt Const Poi nter [arraylen];
for (int i=0; i<arraylen; ++i)
plist->Eval Paranm(k_mult, i, &nydata->filters[i], &nydata->instances[i]);
idata->data = (void *) nydata;
i dat a->freefunc = rel easel nstanceDat a;
return O;
}

Running multiple filters

Like bxdfs, light filters can be parameters to other light filters. The last filter given before an Light call (the root filter in a tree of filters) is responsible for
delegating to the filters in its parameter list. Furthermore, light filters can be disabled on a gprim basis. To respect this, it is the responsibility of the filter to
call Ri xLi ght Fi | t er Cont ext : : | sEnabl ed() . If the upstream filter is not enabled, don't run it. | sEnabl ed() also returns a pointer to the upstream
filter's i nst anceDat a, which should be passed to its Fi | t er () method.

void PxrLightFilterConbiner::Filter(
Ri xLi ght Fil ter Context const *IfCtx,
Rt Const Poi nter instanceDat a,
int const nunSanpl es,
int const * shadi ngC x| ndex,
Rt Vector3 const * tolLight,
float const * dist,
float const * lightPdfIllum
Ri xBXLobeWei ghts *contri buti on)

nyData const * nmydata = (nyData const *) instanceDat a;
for (int i=0; i<nydata->arraylLen; ++i) {

Rt Const Poi nt er next | nstanceDat a;
if (IfCx->lsEnabl ed(nydat a->i nstances[i], &nextlnstanceData))

{
nydata->filters[i]->Filter(
| f &t x, nextlnstanceData,
nunBSanpl es, shadi ngCt x| ndex,
toLight, dist, lightPdfIllum contribution);
}

	Writing Light Filters

