PxrVolume

® Basic Workflows
© Constant fog
© Smoke
© Clouds
® Advanced Workflows
© Crepuscular Beams
® Performance Suggestions
O Parameters
© Diffuse Color
© Emit Color
O Light Source
© Multiple Scattering
© Velocity and Motion Blur

PxrVolume is a material that can be used to render volumetric effects which can vary wildly in complexity, including:

® Constant fog (a constant homogeneous volume with single scattering);

® Smoke (a heterogeneous volume where single scattering suffices);

® Fire (a heterogeneous volume with emissive properties);

® Clouds (a heterogeneous volume where multiple scattering is usually required)

PxrVolume is intended to be a basic material that takes as input a small number of volumetric properties. Modeling of complicated volume properties
should either be handled by upstream nodes, or baked into a volumetric file format such as OpenVDB by a simulation tool.

Users of PxrVolume should be aware of the difference between homogeneous volumes and heterogeneous volumes: homogenous volumes have a
constant density and color, whereas heterogeneous volumes have varying density and/or color. Heterogeneous volumes are typically much slower (and
noisier) to render than homogeneous volumes.

1 PxrVolume is a dedicated volume shader, optimized for dealing with "pure” volumes. It cannot deal with any surface effects such as refraction
or reflection at a boundary between two different types of media, so you cannot use PxrVolume to render things like murky glass or water
surfaces. If you are looking for shader that can do surface effects, along with a limited amount of volumetric effects, take a look at the single
scattering parameters of PxrSurface.

Basic Workflows

Constant fog



https://rmanwiki.pixar.com/display/REN23/PxrSurface

Fog effects that are constant (i.e. involving a homogeneous volume) can be easily modelled using just PxrVolume parameters, without any input
connections. This provides the most efficient rendering.

For any fog effects that enclose the camera or envelop light sources, we require that PxrVolume be attached to a RiVolume object. Otherwise, PxrVolume
can be attached to any closed piece of geometry in order to create simple effects such as a shaped region.

If depth attenuation is the only effect that is required, the Diffuse Color can be set to black: light is not scattered by the volume, it is only absorbed, and De
nsity is the only parameter that is important. Otherwise, the diffuse color needs to be set to the color of the fog.

Smoke

For heterogeneous media like smoke, the typical approach is to bake the properties of the smoke into a file like an OpenVDB file. The OpenVDB file would
contain a small number of properties including the density, the velocity (if using motion blur), and possibly the albedo. The OpenVDB should be attached to
a RiVolume and read using the impl_openvdb plugin. The name of the density property of the OpenVDB file is then used directly with the PxrVolume Densi
ty Float PrimVar parameter.

Smoke tends to have a very low albedo, so a dark color is used for the Diffuse Color parameter. (If the color is baked into the OpenVDB file, a PxrPrimVar
node can be used to extract the color property from therein.) Because of this low albedo, there is usually very low amounts of light that have scattered
multiple times in the volume, so Multiple Scattering can be left turned off, and Samples can be increased beyond 1 to provide faster rendering.

Since smoke is typically isotropic, the Anisotropy settings can be left at their default. The Equiangular weight can be left as is if it is expected that there
are light sources near to, or within the volume, or set to 0.0 if no light sources are expected to be anywhere close to the volume.


https://rmanwiki.pixar.com/display/REN23/Volumes
https://rmanwiki.pixar.com/display/REN23/Volumes

¥ PaxrVolume
Diffuse (
Light source

Multiple Scattering

Density

Density Float PrimVar

Max Density
Anisotropy

Primary Anisotropy

idary Anisotropy

Lobe Blend Factor

Sampling

MuliScatter Optimization

Clouds



Clouds are very difficult volumes to render, because the aggregate behavior of water droplets and their interaction with light is a complicated phenomenon.
Unlike smoke, the light that reaches the eye from a cloud has typically bounced inside the cloud tens or hundreds of times. On top of that, the scattering
behavior (the way light bounces inside the cloud) is very complicated, as it involves both forward scattering and backwards scattering, with multiple peaks
for both.

A typical approach to modeling the cloud itself is to bake the density of the cloud into a file like an OpenVDB file, and the name of the density property of
the OpenVDB file would then used directly with the PxrVolume Density Float PrimVar parameter. Clouds typically reflect all light, so a simple Diffuse
Color of (1, 1, 1) is sufficient. In order to capture the complicated light behavior of the cloud itself, Multiple Scattering is required, along with setting a Prim
ary and Secondary Anisotropy. The settings for anisotropy below reflect a physics based approximation to the complicated scattering behavior of real
clouds. Because multiple scattering is used, the samples parameter is unused and can be set to 1. Finally, if there are no light sources inside the clouds
themselves, Equiangular weight can be set to 0.0 as equiangular sampling would provide no benefit. (On the other hand, in the case of stormy weather
where lights might be placed inside the clouds to simulate lightning flashes, equiangular sampling might prove beneficial.)

(‘D Note that scattering in the volume is controlled by the Max Path Length parameter in the chosen integrator and not the individual diffuse and
specular trace depths. You can find more information on this under the section below called Multiple Scattering.




¥ PurVolume

Light source

v Multiple Scattering

Velocity
VelocityMultiplier 1,000
Density
Density Float PrimVar
Density Color PrimVar
Dens
Max D

Anisotropy

Primary Anisotropy

Lobe Blend Factor
Sampling

MultiScatter Optimization

Advanced Workflows

Crepuscular Beams



Crepuscular beams (sometimes called "God rays") is simply the result of light scattering in a volume. When this light is isolated into beams (for example,
the few rays of sunlight that escape through a forest canopy) the contrast between the parts of the volume that scatter light and the rest of the volume
leads to a striking effect.

In order to efficiently render crepuscular beams, it is important to try to maximize the effect of direct lighting - i.e. maximize the volume that can directly
trace a path to a light source. If the volume must trace a path to a light source indirectly by going through another surface or material, the convergence of
the beams may be very slow and unacceptably noisy. In the image above, the stained glass window on the right is modelled as "thin glass": instead of
relying on a secondary material bounce to refract through the glass, shadow rays from the volume that trace towards the light source are unimpeded (do
not refract), and rely only on the shadow tinting behavior of the stained glass material. The "thin" parameter of PxrSurface (located under the glass
parameters) allows one to achieve exactly this optimization.

Performance Suggestions

Density is the most critical property of a volume. It is a measure of both how much light is absorbed and scattered by the volume. Volume integration may
require many billions of density evaluations over the course of a single render, so it is important to ensure that the renderer can evaluate the density as
quickly as possible. This is where baking a complicated signal to a volumetric file format such as OpenVDB can be useful, as it means the renderer can
simply look up the value from the data. For best performance, we highly recommend using the PrimVar density parameters if at all possible, rather than
using an input connection, even if that input connection is just a single PxrPrimVar node.

For heterogeneous volumes using the RiVolume primitive, at the beginning of the render, PxrVolume will automatically compute density everywhere inside
the volume and use this information over the course of the render to greatly speed up the density sampling. The accuracy of this computation is controlled
by the dice attribute micropolygonlength . Setting the micropolygonlength to a low number will result in a very accurate density estimation, but may
cause the initial computation to take a long time (manifesting as a slow first rendering iteration) and may also cause the renderer to use a lot of memory.
Setting this value too high will lead to a less accurate density estimation, which may cause isolated pockets of very high density in the volume to be
missed. For a 2K render, we recommend that a setting of 5 or more be used, unless deformation motion blur requires a lower setting. If the camera is
passing through or near the volume it might be advisable to change the dicing projection from planar to world or spherical. You may lose some details near
the camera but it might avoid creating lots of data near the lens.

Emissive volumes may be very slow to converge, especially if they are the only light source in the scene - it may require many hundreds or even
thousands of camera samples to render a noise free image. Until volumes are supported as full light sources that can be used for direct lighting, we
suggest that emissive volumes be used very sparingly.

Multiple Scattering is a very costly effect, both because it means the light is bouncing that many more times in a volume, but also because PxrVolume
cannot take more samples itself (the Samples parameter is ignored), and is at the mercy of the Integrator settings. Moreover, multiple scattering may slow
down the convergence of objects behind the volume. Therefore we suggest that whenever possible, multiple scattering should be avoided. For media with
low albedo, multiple scattering adds very little to the final render. For some media like clouds, whose light transport involves many tens or hundreds of light
bounces, unfortunately multiple scattering may be unavoidable.


https://rmanwiki.pixar.com/display/REN23/PxrSurface

When using single scattering, it is often much more cost effective to increase the number of Samples taken in the volume in order to improve the
convergence, rather than increase the number of camera samples.

Equiangular sampling improves the convergence of volumes that are lit by lights that are inside or near the volume, but otherwise slows down the
volume if the lights are far away. The default value of equiangular sampling (0.5) is a compromise that works acceptably across most scenes. If you know
that there are no light sources near the volume, then the equiangular weight should be set to 0.0 in order to speed up the rendering. Equiangular sampling
is disabled for multi-scatter volumes in versions 21.5 and later.

1 Equiangular sampling may cause negative values in the volume alpha with low samples. This is a side effect of how the parameter works. Two

solutions would be to set the Equiangular Weight to 0.0 or allow more samples to be taken which will correctly average out to a positive number.

Anisotropic volumes tend to converge slower than isotropic volumes, simply by nature of the sampling that is involved.

Parameters

Diffuse Color

The color of the volume. Default is white (1,1,1). Making a connection on this parameter will create a heterogeneous volume.

If you are familiar with scattering, absorption, and extinction coefficients, note that the diffuse color here is the scattering albedo, which is the scattering
coefficient divided by the extinction coefficient.

Emit Color



The emissive color of the volume. This is useful for modeling effects such as phosphorescent fog or fire. Default is black (0,0,0), i.e. the volume will not
emit light. The following images demonstrate an emit color setting of (1, 1, 1) and (5, 2.5, 2.5), with no other light sources in the scene.

When this option is selected, the emissive properties of the volume are sampled as a light source. This may brighten your scene through improved
sampling. Note that the emit color cannot be black for this to operate. With a single scatter volume, even at maximum path length 1, it is equivalent to a
multiscatter volume with the light source option turned off. Below is off versus on.

Light Source

Multiple Scattering

This parameter is used as a hint as to whether the volume should compute indirect illumination inside the volume (also known as multiple scattering,
because light will scatter more than once inside the volume). If the multiple scattering parameter is set to 0, and the integrator respects this hint,
PxrVolume will only perform single scattering: points inside the volume will only be lit directly by light sources. If set to 1, points inside the volume will be lit
by indirect illumination as well. The first image below has multiple scattering set to 0O, i.e. it is a single scatter volume. The middle image has multiple
scattering turned on, with 2 bounces of light. The right image has multiple scattering turned on with 4 bounces of light.



For very dense volumes with high anisotropy, it is often the case that light will scatter many times inside the volume before reaching the eye, and multiple
scattering is the only way to achieve the correct look. It is also often the only way to correctly render certain effects such as volume caustics. On the other
hand, multiple scattering can be very expensive, which is why the parameter defaults to 0 (off). Moreover, when rendering homogeneous volumes, turning
off multiple scattering may result in less noise for directly lit surfaces behind the volume.

Note that due the nature of their algorithm, some integrators (in particular, bidirectional path tracers such as PxrVCM) have no choice but to implement
multiple scattering of volumes, and therefore will ignore this hint.

Velocity and Motion Blur

Unlike all other geometry types in RenderMan, deformation motion blurred volumes are enabled primarily using Bxdf controls. Enabling deformation
motion blur with PxrVolume is straight forward: specify a value for the velocity parameter, which is vector valued. Under the hood, the renderer will
automatically use the velocity vector to generate temporal varying data for all varying inputs. This preprocessing step occurs at the beginning of the render,
and will increase the time to first pixel; however, it is necessary in order to greatly increase the efficiency of rendering blurred volumes.

The renderer supports two techniques for deformation motion blurred volumes. The "Eulerian” technique, supported as of 23.5 (and the default since that
version), has low preprocessing time, very low memory overhead, has low bias (assuming that the micropolygon length is set to a reasonable value), and
is reasonably accurate. The downside of this technique is that the velocity values must be non-zero and supplied everywhere in the path of the motion
, even if the volume has no "presence" in that path at the current baked shutter time. This is because the Eulerian technique assumes that time-varying
property of a volume (e.g. the time-varying density) can be approximated by using the velocity at the current time, backtracking using that velocity value,
and looking up the density at the backtracked location. The following images from Houdini demonstrate these boundary velocity requirements for Eulerian
motion blur. The 1st image shows two spheres with density and wireframe boxes representing the velocity field bounds. The green lines show the intended
motion of the volume. If the velocity field is not fully written out over the range of motion, Eulerian motion blur will clip the velocity as shown on the right
rendered images. Note that in some highly chaotic fluid scenes, even if this requirement is not satisfied, the rendered image may still look satisfactory (the
clipping may not be obvious).



The "Reves" technique, which was the algorithm used for deformation motion blurred volumes prior to 23.5, is more accurate than the Eulerian technique
and has a faster convergence time after the renderer has started. Unfortunately, it has a very high preprocessing cost, very high memory requirements,
and is inherently a biased technique. As such, it requires the micropolygon length to be set to low numbers (exacerbating both the time and memory costs)
in order to avoid visible biasing which manifest as blurry volumes. In most cases, the Eulerian technique should be preferred unless the velocity boundary
conditions mentioned above cannot be satisfied for some reason.

The velocity vector value is expected to be relative to the entire shutter range. If you are working with velocity data measured in units per second and the
shutter is not set to an entire second's worth of time, you may need to scale the data by the number of frames per second (i.e. 1/24.0) for a correct picture.
We supply a control as a Velocity Multiplier to aid in conversion should your data be in the wrong measurement or allow you to make artistic tweaks to the
motion blur. Alternatively, the Attribute "volume" "fps" may be set on the geometry directly to accomplish the same thing; in this case, the value of this
attribute would be number of frames per second directly (24), not the inverse.

The following images were rendered using Eulerian motion blur, in conjunction with an OpenVDB file containing a velocity grid. Image on the left was
rendered with no blur, while the image on the right has velocity supplied by a connection to the PxrPrimVar node reading a velocity grid from the file. The
velocity has been exaggerated by a factor of 10. Note that this OpenVDB file (from openvdb.org) does not satisfy the boundary requirements of having
velocity data in all areas of movement - this can be seen in the fact that the silhouette edges of the volume do not change significantly despite the
exaggerated movement. However, there are no obvious objectionable artifacts, and area of the volume away from the boundary convey the desired
velocity detail.



Extinction Distance

This is the distance (in scene units) at which a homogeneous volume becomes opaque. If this is non-zero, it overrides the density connections,
maintaining a homogeneous volume. This is great for creating fog/mist that fills a scene. Below we set the parameter to a low value and then increase it
until the last light in the scene is clearly visible.



Density Float PrimVar

A primvar from the geometry which overrides the density float of the volume, unset by default. Setting this overrides the densityFloat input, and is more
efficient than simply using a PxrPrimVar pattern connection.

For workflows that use a baked volumetric representation (such as an OpenVDB file) we highly recommend the use of this parameter setting over the use
of an input connected to the Density Float parameter.

Density Float

The density of the volume directly controls how light is attenuated by the volume - i.e. it directly affects how the volume casts shadows. The density float
parameter is overridden by the density color if density color is changed from its default value. Unless you require colored shadows, you should prefer to set
this parameter rather than the density color parameter as the volume will render more efficiently.

Making an input connection on this parameter will create a heterogeneous volume.

The density is also known as the extinction coefficient (the sum of the absorption and scattering coefficients).

Below, from left to right: density of 0.1, 0.25, and 2.0.



Density Color PrimVar

A primvar from the geometry which overrides the density color of the volume, unset by default. Setting this overrides the densityColor input, and is more
efficient than simply using a PxrPrimVar pattern connection.

For workflows that use a baked volumetric representation (such as an OpenVDB file) we highly recommend the use of this parameter setting over the use
of an input connected to the Density Color parameter.

Density Color

The density of the volume directly controls how light is attenuated by the volume - i.e. it directly affects how the volume casts shadows. The density color
parameter overrides the density float if density color is changed from its default value. If you do not need colored shadows from the volume, then you
should set the density float parameter and leave the density color parameter untouched; the volume will render more efficiently.

Making an input connection on this parameter will create a heterogeneous volume.

The density is also known as the extinction coefficient (the sum of the absorption and scattering coefficients).

Below, from left to right: density color of (1.0, 0.25, 0.25), (2.0, 0.25, 0.25) and (5.0, 0.25, 0.25). Note that since the density of the volume is higher in the
red channel, more red light is scattered away, leaving behind a cyan contribution.



Max Density

The max density parameter is only used by heterogeneous volumes and controls the step size used to sample the volume. For correctly unbiased
rendering, the max density must be higher than any density encountered inside the volume. A high value of max density may result in slower renders since
more steps will be taken to sample the volume. Setting the max density too small will speed up your render, but will also lead to incorrect (biased)
rendering as dense regions of the volume will be undersampled.

Starting in version 20.7, for RiVolumes only, PxrVolume will also automatically compute the density bounds over the subsections of the volume, and use
this information to vary the step size over the ray. This means that more steps will only be taken in denser parts of the volume. Therefore, for very
heterogeneous volumes, setting a higher value for max density will no longer have a detrimental effect over the entire volume; in practice, it is often
possible to simply set this to a very high value and not worry about this parameter any further.

The default value of max density is 1.0.
Primary Anisotropy

Controls the direction in which the volume scatters light. The anisotropy parameter has a range of -1 to 1, with the default being 0. A value of 0 means the
volume is isotropic: light is scattered in all directions with equal probability. A positive value greater than 0 means the volume is forward scattering:
incoming light has a higher chance of being scattered in the same direction (away from the incoming light). A value of anisotropy less than 0 means the
volume is backwards scattering: incoming light has a higher chance of being scattered in the reverse direction (back towards the direction of incoming
light).

Many volumes (such as smoke) are generally isotropic, but others can be highly isotropic. For example, organic materials like flesh and skin tend to have
highly forward scattering characteristics. Note that the effects of high anisotropy diminish once multiple scattering is involved, as such materials tend to
converge upon isotropic behavior after many bounces of light.

Below are examples at -0.8, 0.0, and 0.8 anisotropy for a single scattering volume.



Here are more examples at -0.8, 0.0, and 0.8 anisotropy for a multiple scattering volume.



Secondary Anisotropy and Lobe Blend Factor

Some volumetric materials have scattering characteristics that cannot be captured by a single lobe of anisotropy. For example, clouds have a very
complicated scattering behavior: they are mostly highly forward scattering, but still have a substantial backwards scattering component, which is largely
responsible for the "silver lining" seen on otherwise dark clouds. In order to render such materials, a second anisotropy lobe can be enabled on the
volume, along with a blend factor which determines how to blend between the two separate lobes. A blend factor of 0 (default) means that only the primary
anisotropy will be considered. A blend factor of 1 means that only the secondary anisotropy will be used, and a blend factor of 0.5 means that each lobe
will be considered equally.

From left to right: lobe blend factor set to 0, 0.5, and 1.0 for a single scattering volume with primary anisotropy = 0.0 and secondary anisotropy = 0.8. Note
that the first and third images are essentially rendered using single anisotropic lobes.



From left to right: lobe blend factor set to 0, 0.5, and 1.0 for a multiple scattering volume with primary anisotropy = 0.0 and secondary anisotropy = 0.8.
Note that the first and third images are essentially rendered using single anisotropic lobes.



Equiangular Weight

Sets the probability of equiangular sampling being used instead of density sampling. Equiangular sampling improves the convergence of volumes close to
light sources, while density sampling can be a better technique when dealing with volumes with dense or highly varying density. The default value of 0.5
means both techniques will be used equally and combined with multiple importance sampling. If the volumes are dense and far away from light sources
then decreasing the equiangular weight may result in better convergence. This does not apply to multi-scatter volumes.

min/max Samples

This setting controls sample quality for single scatter volumes. Higher number of volume samples will improve convergence of volumes at the cost of
render time. However, the trade-off in scenes with other objects is that the volume will sample more without increasing costs elsewhere in the image and
may improve your results. Note convergence rates vary within volumes as well, and this means some regions can converge reasonably well with a small
number of volume samples, but others might need more help.

®* minSamples enforces a lower limit to sample, only valid with Single Scattering
® maxSamples are the maximum limit per ray inside the Volume

Multiscatter Optimization (Valid for PxrPathTracer)
On/Off, the default is off.
Extinction Multiplier

This parameter is used during Multiscatter volume rendering. The value must be above 0.0 and defaults to 1.0 which is no modification. Values below 1
reduce the extinction coefficients while values above 1.0 increase them.

Contribution Multiplier

This multiplier is used during Multiscatter volume rendering. This parameter multiplies the direct lighting contribution for multiscatter events. Values must
be above 0.0 and defaults to 1.0 which is no modification. Value below 1.0 reduce the contribution of direct lighting while values above 1.0 increase them
(this may make volumes appear softer and more translucent.)

The above parameter for "Light Source" is useful for many applications when using a volume with emission properties. But there may be times you need to
control the influence of the light from the volume. This requires the use of a light filter. The PxrVolume material doesn't have a way to use a light filter so
you can apply the PxrMeshlight material to the volume object along with the PxrVolume for shading.


https://rmanwiki.pixar.com/display/REN23/Light+Filters
https://rmanwiki.pixar.com/display/REN23/PxrMeshLight

In doing so this will light the scene but allow you to connect and use a light filter through the meshlight controls. But there is a caveat to this workflow that
requires extra consideration in your setup.

When you apply the meshlight to the volume you may notice an increase in illumination and/or additional noise. This is because of double contribution of
the volume emission and the meshlight itself. Here are the current steps to reduce this issue.

1 Ifyou do not need a light filter then this work is unnecessary, simple use the "Light Source" parameter.

1. Duplicate your original volume
a. On the duplicate, assign a duplicate PxrVolume with the correct pattern connections to the original patterns you may be using to drive

emission, density, etc
b. Assign a PxrMeshlight to the volume using the DCC application options (SG Node, Material Builder, etc)
c. Hide this volume from indirect visibility, we only want the light contribution.
2. In the original volume, disconnect the emission, this will now be lit by the duplicate volume's meshlight source. This prevents double light

contribution
3. Apply a light filter as needed to the duplicate volume with meshlight

Examples:

Using Light Source

Adding the meshlight increases light in the scene and noise, this is the incorrect workflow



This image is using the above workflow to create a well converged render while allowing use of a light filter

PxrVolume also writes to the U2 user lobe as "DiffuseAlbedo”



	PxrVolume

