
1.
2.
3.

Compiling Plugins & Linking Applications

RenderMan Plugins
Applications and Bridge Tools

Dynamic Linking
Dynamic Loading RenderMan

RenderMan Plugins

Compiling and using a new plugin requires three steps:

Compiling the C++ file that contains your plugin functions.
Compiling the shader that uses your functions.
Rendering a frame.

Compiling your C++ file is straightforward: just use the standard C++ compiler to generate an object (.o/.obj) file, then generate a shared object (.so/.dll)
file from the object file. Remember that, though using C++, you must use C style linkage. You also must ensure that your C++ compiler and libraries are
compatible with the compiler and runtime libraries used by PRMan (gcc for Linux and OS-X and Microsoft Visual C for Windows).

Here are example commands for building a plugin on several architectures:

Linux

g++ -fPIC -I$RMANTREE/include -c myfunc.cpp -o myfunc.o
g++ -shared myfunc.o -o myfunc.so

macOS

clang++ -std=c++14 -I$RMANTREE/include -c myfunc.cpp -o myfunc.o
clang++ -bundle -undefined dynamic_lookup myfunc.o -o myfunc.so

Windows

cl -nologo -MD -EHsc -I"%RMANTREE%\include" -c myfunc.cpp
link -nologo -DLL -out:myfunc.dll myfunc.obj "%RMANTREE%\lib\libprman.lib"

The resulting file myfunc.so or myfunc.dll is the plugin that implements your new function. It is not important that the filename matches the name of the
function.

Plugin authors can confirm the compiler/library versions for the intended version of PRMan by running `prman -version`.

Applications and Bridge Tools

For applications, the libprman library will be loading into the the application. Of course, the application will need to be told where to find the library. This can
be done at link-time by linking to libprman or at runtime using the libloadprman.a .the library static library

Dynamic Linking

In this case, the libprman LD_LIBRARY_PATH, rpath, etc.). When using the library is linked to the application in some platform dependent way (i.e.
RenderMan API, a RixContext pointer may be obtained by calling RixGetContext.

Here are example commands for building a plugin on several architectures:

Linux

g++ -c -fPIC -I$RMANTREE/include myapp.cpp -o myapp.o
g++ myapp.o -L$RMANTREE/lib -lprman -o myapp

macOS

clang++ -std=c++14 -I$RMANTREE/include -c myfunc.cpp -o myapp.o
clang++ -bundle -undefined dynamic_lookup myfunc.o -o myfunc.so

Windows

cl -nologo -MD -EHsc -I"%RMANTREE%\include" -c myfunc.cpp
link -nologo -DLL -out:myfunc.dll myfunc.obj "%RMANTREE%\lib\libprman.lib"

Dynamic Loading RenderMan

In this case, the libprman loaded by the application at runtime from the RMANTREE environment variable. This is made possible by directly library is
linking the libloadprman.a the static library into your application. When using the RenderMan API, a RixContext pointer may be obtained by static library
calling RixGetContextViaRMANTREE.

On Unix-based platforms, plugins are linked such that symbols that resolve to entry points in libprman.so libprman.dylib or are left
lunresolved. Note that on Linux the use of -fPIC is important for code that will be used as a plugin and that there is no explicit linkage of

ibprman.so deeptexture, even if the plugin makes reference to application interfaces, like .

On macOS, the linker must be explicitly told that the unresolved symbols will be resolved at runtime.

On Windows, the libprman.lib must always be referenced to resolve the unresolved symbols in the plugin and must define
PRMANLOADER, this will retrieve the correct version of of the declaration. You must also link libpxrcore.lib which implies the code is
dependent on $RMANTREE\bin\libpxrcore.dll. When your code is loaded that directory will need to be in the search path. You may add
this path to the PATH environment variable or, if you're authoring a plugin, the following code example would work:

BOOL rt = ::SetDefaultDllDirectories(LOAD_LIBRARY_SEARCH_DEFAULT_DIRS);
if (!rt)
{
std::cerr << "Failed to set add directory\n";
return 1;
}

DLL_DIRECTORY_COOKIE cookie = ::AddDllDirectory(L"C:\\Program Files\\Pixar\\RenderManProServer-23.0b1\\bin");

if (!cookie)
{
std::cerr << "Failed to set add directory\n";
return 1;
}

When receiving a RixContext, you must do your due diligence to make sure that the version of the context is the version you are expecting to
receive using the GetVersion() API and comparing against the version you are expecting. If the check fails, you should return an error and
disable your plugin. Otherwise, a crash is likely.

Here are example commands for building a plugin on several architectures:

Linux

g++ -c -fPIC -I$RMANTREE/include myapp.cpp -o myapp.o
g++ myapp.o $RMANTREE/lib/libloadprman.a -o myapp

macOS

clang++ -std=c++11 -c -I$RMANTREE/include myapp.cpp -o myapp.o
clang++ myapp.o $RMANTREE/lib/libloadprman.a -o myapp

Windows

cl -nologo -MD -EHsc -I"%RMANTREE%\include" -c myapp.cpp
link -nologo -out:myapp.exe myapp.obj "%RMANTREE%\lib\libloadprman.lib"

The following is an example of how to obtain an interface API object, in this case the SceneGraph manager, and applying the version check noted above:

#include "RixInterfaces.h"
#include "RixSceneGraph.h"

RixContext* ctx = RixGetContextViaRMANTREE();
if (!ctx)
{
 // cannot proceed, no RenderMan
 return;
}
RixSGManager* sgm = static_cast<RixSGManager*>(ctx->GetRixInterface(k_RixSGManager));
int myCompiledVersion = k_RixSGManagerVersion;
if (sgm->GetVersion() != myCompiledVersion)
{
 // Unrecoverable error, this is the wrong version of scene graph api and
 // we should not continue.
 return;
}

When receiving an API object from the RixContext, you must do your due diligence to make sure that the version of the API object is the version
you are expecting to receive using its GetVersion() method and comparing against the version you are expecting. If the check fails, you should
return an error and disable your plugin. Otherwise, a crash is likely.

	Compiling Plugins & Linking Applications

