
Display Services
Introduction
The display services API provides the link between integrator plugins and the frame buffer.  Typically, an integrator will receive a batch of camera rays as 
input and produce a radiance and opacity estimate for each ray as output.  It may also output geometric quantities, breakdowns of the radiance by light 
path expressions, and other AOVs.  All of these outputs are passed back to the renderer by calling the methods in the display services API.

The display services are also made available to pattern and bxdf plugins while the integrator is running.  This use of the display services is rare, but can be 
helpful for debugging or special effects.  For example, the PxrTee pattern passes a float or color value from its input to its output while simultaneously 
writting it to a display channel via the display services.

After the integrator has returned control to the renderer, any sample filter plugins in use will be run and given a chance to read and modify the values that 
were sent to the display services.  Once these are finished, the renderer will use the final values to update the adaptive sampler and then pixel filter and 
accumulate them into the frame buffer for display.

API

RixDisplayChannel

This struct conveys information about one of the display channels currently in use (normally plugins will be given a pointer to an array of these 
structures).  The key property here is the  which serves as a handle to the channel and can be passed to most of the calls in the display services.  The id
other fields are more informational: the  tells a plugin whether the channel is for a light path expression or for a simple AOV.  The  tells the style type
plugin whether the channel is a scalar float, an RGB color, or something else.  Finally, the  simply gives the name of the channel.channel

RixDisplayServices

The  and  methods update a table containing the values to be pixel filtered for each channel for each ray.  The main difference between Splat() Write()
the two is that  is accumulative and simply sums the new value into the current entry in the table.  It is useful for situations where an integrator Splat()
wants to add light received at the camera from each bounce of a path.  The  methods, on the other hand, simply overwrite the existing value in Write()
the table.  These are most useful for channels conveying things like normals, positions, or other geometric quantities where the values in the channel are 
not additive.  Note, however, that a call to  does not overwrite the value in the frame buffer.  It only overwrites the value to be combined into the Write()
frame buffer after the integrator and sample filters return.

The  method modifies the depth of a sample.  This primarily affects deep images and depth channels such as "z" or "zfiltered" in WriteDistance()
shallow images.  By default, the depth will be distance to the camera ray hit.  However, for volumes this initial ray hit will come from the front of the volume 
envelope.  Instead, an integrator will want to set it to the distance to an actual light scattering or absorption interaction.

The  can be used to add additional samples along a camera ray where they have the same screen position but different depths and AddSample()
opacities.  This can be useful for an integrator if a camera ray passes in a straight line through multiple transparent surfaces or volumes, each of which 
partially attenuates or scatters light into the ray but does not significantly deflect it.  (It should  be used for refraction or reflection bounces.)  This is not
primarily used so that deep images can have samples at all relevant points rather than just attributing everything to the closest hit point.

Pattern and Bxdf plugins can use  to get a list of available display channels in order to look up a  to write to with GetDisplayChannels() RixChannelId
the  and  methods.  Integrator plugins may also use this.  However, the same information is provided to integrators during their Splat() Write()
initialization.  It may be more efficient for them to look up channel ids and cache them at that time.

Finally,  may be used to tell the renderer to abandon everything sent to the display services during this call to the integrator and DiscardIteration()
not to actually commit them to the frame buffer.  For example, Metropolis algorithms often have a period of startup bias before the results are sufficiently 
randomized.  A Metropolis-based integrator could use this function to prevent results from this period from contaminating the frame buffer.

See Also
The  interface assists integrators by matching light paths to light path expressions.  Its main methods take a pointer to the display services and RixLPE
automatically call them on the integrator's behalf for any matched channels.

The utility functions in   can be used by an integrator to build a list of channels matching a standard list of names for geometric AOV and PxrGeoAovs.h
then compute those values from the shading contexts and call display services to show them.


	Display Services

