
Mutable Shading Contexts
In the majority of circumstances, shaders are expected to treat the as const, read-only memory. Nonetheless in other RixShadingContext
circumstances it may be useful for a shader to alter some geometric properties of the current shading context. For example, a shader may wish to perform
super-sampling of an upstream pattern network in order to perform some brute force antialiasing that would be otherwise impossible. This would require
the ability to move the current points of execution, leading to the concept of a : a shading context which allows a limited amount of mutable shading context
update ability. Mutable shading contexts are also essential to the operation of , which need to be able to set up new locations for light volume shaders
scattering during the volume line integration process.

Given a normal shading context bound to a shader, a mutable shading context can be created by calling the on a CreateMutableContext() parent Rix
. The mutable context is created in the Bxdf memory of its parent context and does not need to be released, as it will be automatically ShadingContext

reclaimed when its parent context is released.

The primary difference between a mutable shading context and a normal shading context is that the and methods SetBuiltinVar() SetPrimVar()
are now available. (On the normal shading context, these methods are no-ops). These methods should be treated with care, especially in performance
sensitive situations; every call can potentially trigger an expensive re-evaluation of the entire upstream pattern network. Moreover, any such reevaluation
may lead to increase in the peak memory requirements of rendering, as memory buffers allocated by the render on behalf of the mutable shading context
will not be released until the parent shading context is itself also released. This is particularly a concern in cases where a large amount of supersampling is
taking place, or a volume integrator is taking a lot of samples in order to integrate a volume.

Builtin Variables

SetBuiltinVar() allows the values of any to be overridden. The caller is responsible for providing a pointer to memory allocated with a builtin variable
full worth of allocation. This memory will subsequently be owned by the , and therefore should RixShadingContext::numPts RixShadingContext
be allocated using the own memory allocation methods (i.e.) using the appropriate hint for Bxdf memory duration.RixShadingContext's Allocate()

Normally, a shader that alters any single builtin variable is responsible for ensuring that all other builtin variables are also updated appropriately. As a
special exception to this, any alteration of the builtin variables , , or by a surface shader will automatically trigger recomputation of , , , and u v w P dPdu dPdv

 to reflect the updated values of u, v, w, as well as any other builtins that are derived from those values. All other built-in variables will be flushed from Nn
the cache and recomputed as necessary. For volume shading, any alteration of P will automatically trigger recomputation of all built-in variables derived
from P.

Primitive Variables

SetPrimVar() allows the value of any and its associated radius to be overridden. The caller is responsible for providing a pointer to primitive variable
memory allocated with a full worth of allocation. This memory will subsequently be owned by the ,RixShadingContext::numPts RixShadingContext
and therefore should be allocated using the own memory allocation methods (i.e.) using the appropriate hint for RixShadingContext's Allocate()
Bxdf memory duration.

Unlike , allows for the creation of primitive variables that are not specified in the original geometry description.GetPrimVar() SetPrimVar()

https://rmanwiki.pixar.com/display/REN24/RixShadingContext
https://rmanwiki.pixar.com/display/REN24/Writing+Volume+Integrators
https://rmanwiki.pixar.com/display/REN24/RixShadingContext#RixShadingContext-getbuiltinvar
https://rmanwiki.pixar.com/display/REN24/RixShadingContext#RixShadingContext-getprimvar

	Mutable Shading Contexts

