
Non-Opaque Surfaces

Final opacity
Presence (scalar Final Opacity)
Combined presence and opacity
Probabilistic hit-testing vs. blend-and-continue
Cached Presence and Opacity
[Historical] Presence vs. Bxdf Continuation

Final opacity

Bxdfs not only compute the scattering of light, but are also allowed to provide:

presence (a scalar)

opacity (a color)

of non-opaque materials. This is done using the interface, that the renderer will query by invoking .RixOpacity RixBxdfFactory::BeginOpacity()

Historically (RenderMan RIS 21 and before) has been used for masking out parts of an object, while has been used for coloring shadows presence opacity
cast by an object. Depending some ray types (e.g. camera rays), was being ignored, and probabilistic hit-testing was mandatory for .opacity presence

In RenderMan RIS 22, this has been unified, and and are now combined into a single property, the . This can presence opacity final opacity final opacity
be used for both probabilistic hit-testing and traditional 'blending' opacity.

However, despite the fact that we are now dealing with a combined , it can still be helpful to describe the main two usages of this quantity as:final opacity

a 'presence' (actually: scalar)final opacity
an 'opacity' (actually: colored final opacity)

Note:

the API still exposes two hooks (for each of the and component of the), and depending RixOpacity presence/scalar opacity/colored final opacity
on the instance hint returned by the , and on the ray type, only one of this hook may be called.RixBxdfFactory
the shading mode () passed to is a hint as to the renderer's intentions for the RixSCShadingMode RixBxdfFactory::BeginOpacity() RixO

 object:pacity

if the shading mode is , only the method will be called. k_RixSCPresenceQuery RixOpacity::GetPresence() RixBxdfFactory:
 need only evaluate the pattern inputs relevant to computing the component.:BeginOpacity() presence

if the shading mode is , either , (or both) will k_RixSCOpacityQuery RixOpacity::GetPresence() RixOpacity::GetOpacity()
be executed on the object, and pattern inputs relevant to both and components should be fully evaluated.presence opacity

Presence (scalar)Final Opacity

Consider the case of trying to render a tree leaf. Rather than model it as a polygon mesh, it's common to represent a leaf as a cheap bilinear patch with an
associated mask texture representing the leaf shape. Where the mask is zero, there is no leaf. We use the term rather than opacity to capture presence
this use case. The leaf-shaped map is a .scalar presence map

It is important to note that in this usage, conceptually has no bearing on light scattering (and vice-versa). Where a material is partially present, its presence
light scattering properties do not change. Instead, this is interpreted as the material scattering less often, with each scatter event being identical to what
would happen with a totally present material. Critically, this mean that such as glass, because the presence is not a way to model transparent surfaces
light scattering and refractive properties of the glass cannot be modeled by presence alone.

A leaf rendered with PxrDiffuse, using a leaf texture map as input to the presence parameter.

Bxdfs wishing to use a non-trivial presence must do the following:

implement the method and return a bit vector which includes the bitRixBxdfFactory::GetInstanceHints() k_ComputesPresence
implement the method and return a object that implements theRixBxdfFactory::BeginOpacity() RixOpacity RixOpacity::

 methodGetPresence()

The object is bound to a shading context, similarly to a object. will typically use this shading RixOpacity RixBxdf RixOpacity::GetPresence()
context (along with any pattern inputs) to return an array of presence values. There are Th presence values in the array. RixShadingContext::numPts
ese presence values need to range from 0 to 1, where:

1 is fully present
0 is fully absent
any value in between denotes a probabilistic presence for anti-aliasing

Opacity (colored)Final Opacity

As explained in the section, it would be the responsibility of a semi-translucent thin glass-like bxdf to capture light transport across its surface Presence
(instead of using). However, when it comes to , requiring a similar responsibility is problematic for two reasons:presence transmission rays

Transmission rays do not bend: they are usually fired to compute the amount of light flowing along a straight line between two points. directly
Typically, one of these points is on the surface, the other is on the light. This means that any physically plausible object which requires refraction s

 to transmission rays.hould be opaque
Transmission rays typically outnumber camera and indirect rays, so the cost of running a full shader to obtain a transmission value is worth
minimizing

Nonetheless, it can be desirable to have a method by which approximate colored shadows can be efficiently produced. These are often preferable to the
physically realistic, but noisy, color shadows produced by considering indirect paths. RenderMan allows the bxdf to return an color, to influence the opacity
colors of shadow resulting from tracing . An opaque object would yield black shadows, as if returning an of [].transmission rays opacity 1 1 1

Note that describes the transmittance through the surface (no bending)opacity straight

Below is an example using to yield colored volumetric shadows. The box encloses both the angel statue and a volume. The only light source is opacity
behind the stained glass window (the right wall of the box).

#

If we were to model the stained glass window as a physically accurate piece of glass, complete with full refraction, then the crepuscular rays (also called "G
) shining through the volume would be very expensive to render because the only lighting that could be considered for the volume is entirely od rays"

indirect; the glass would have to be an opaque object and transmission rays from the volume would not reach the light source.

If we instead model the stained glass window as a thin, non-physically accurate piece of glass with colored opacity, then transmission rays from the
volume can now directly reach the light (running the shader of the glass window along the way to get a colored contribution). This allows the scene opacity
to be rendered with the direct lighting optimization, which allows for a much faster render.

Note that when writing a bxdf for a thin translucent surface, careful consideration should be given as to whether should also be fired indirect rays through
. If colored is being used (and depending on the circumstances) it is quite likely that such rays should not be fired, otherwise the lighting the surface opacity

contribution will be doubled.

Historically, colored would only be used for transmission rays, but it is now possible for it to affect camera and indirect rays. Similarly to the final opacity
explanation above, special care needs to be taken by the bxdf to make sure there is no double contribution.

Volumetric crepuscular rays, efficiently rendered using direct lighting by means of stained glass using colored opacity

Bxdfs wishing to use a non-trivial must implement do the following:opacity

implement the method and return a bit vector which includes the bitRixBxdfFactory::GetInstanceHints() k_ComputesOpacity
implement the method and return a object that implements the RixBxdfFactory::BeginOpacity() RixOpacity RixOpacity::

 methodGetOpacity()

The RixOpacity object is bound to a shading context, similarly to a RixBxdf object. RixOpacity::GetOpacity() will typically use this shading context (along
with any pattern inputs) to return an array of o values. These values need be colors, ranging from [] (black) to [] (white), where each pacity opacity 0 0 0 1 1 1
channel is:

1 is opaque
0 is non-opaque
any value in between will yield colored transmission shadows (the shadow color is 1 -) opacity

Combined presence and opacity

When the API returns both a and an value, they are combined (multiplied) together. In this case, one could think of the RixOpacity presence opacity pres
 component as the 'intensity' and the component as the 'color'.ence opacity

#
#

Probabilistic hit-testing vs. blend-and-continue

The can be used in two ways:final opacity

as a probability that the surface is present (historical use of the scalar component)presence
as a coloring of the light transmitted through the surface (historical use of the color component)opacity

The former would usually use , where each camera ray would use the (scalar) value as a probability to hit the surface, and probabilistic hit-testing presence
either result in an actual hit, or a continuation (without a hit). In this case, for each original ray, only one shading event is computed (on the actual hit),
although multiple presence may have happened.evaluations

The latter would usually use . On hitting a surface with (colored) , shading would be computed, and weighted by (1 - blending-and-continuation opacity opacity
). A continuation ray would then be traced from this hit point (carrying a colored weight equal to), and the process repeats, until hitting a surface opacity
with full opacity. In this case, for each original ray, multiple shading events may be computed (and special care needs to be taken to prevent a
combinatoric explosion of the number of rays and shading events).

In RenderMan RIS 22, it is possible to use both approaches in all cases, independently of the being scalar or colored. This means:final opacity

a colored can be used with . In this case, additional colored weights are provided through the final opacity probabilistic-hit testing RixShadingCon
 so that the (converged) results are identical to the ones obtained with the approach.text blending-and-continuation

a scalar can be used with . In this case, a mono-chromatic value is used for blending, and continuation rays final opacity blending-and-continuation
are traced. This would yield results identical to the ones obtained with , with a lot less noise, at the cost of additional probabilistic-hit testing
shading computations.

Note that:

if the is zero, the renderer will always skip the hit. This means should never yield hits whose (final) opacity is final opacity RixShadingContext
zero.
using for indirect rays may yield a combinatoric explosion of rays and shading eventblending-and-continuation

Cached Presence and Opacity

RenderMan offers an additional service that may improve performances for scenes making heavy use of (e.g. a forest of presence/opacity/final opacity
trees with presence-mapped leaves).

By having return a bit vector that includes the bit, the bxdf can request RixBxdfFactory::GetInstanceHints() k_PresenceCanBeCached
RenderMan to cache values. This would prevent re-evaluation of the component for every ray that intersects the surface.presence presence

By having return a bit vector that includes the bit, the bxdf can request RixBxdfFactory::GetInstanceHints() k_OpacityCanBeCached
RenderMan to cache values. This would prevent re-evaluation of the component for every ray that intersects the surface.opacity opacity

However, note that as with most of the caching systems, this may introduce bias, manifesting itself as blurred results due to interpolation from the cached
values. and caching efficiency is driven by the setting – a speed vs memory trade-off. The more memory is Presence opacity opacitycachememory
allocated to this cache, the more efficient the opacity reuse will be.

It is also important to consider the effect of caching and view-dependent shading signals. It is not possible to meaningfully cache any presence or opacity
values when these depend on the viewing direction (e.g. facing ratio). In case it is attempted the caching of a view-dependent signal, the result will not be
deterministic, varying on which ray hit will trigger the evaluation of the opacity for a portion of a surface.

[Historical] Presence vs. Bxdf Continuation

When dealing with opaque objects using maps, it is usually the case that the objects are either entirely present or not present at all. In practical presence
terms: the map is used as a cut-out map, and consists mostly of 0-or-1 values. RenderMan takes advantage of this by combining with presence presence p

, actually interpreting the presence value as the .robabilistic hit-testing probability that we actually hit a surface

The compelling advantage of this approach is that for and , the renderer only needs to shade the surface and run the associated camera rays indirect rays
bxdf when the surface is actually hit (due to a non-zero presence). This means the renderer doesn't need to institute a policy of .automatic continuation rays

Presence should be used for cases where the intention is to model a thin semi-transparent surface (rather than an opaque object). Instead, the bxdf not
should generate a , with the appropriate properties (transmission color for example). Even if those samples are generated in the transmitted bxdf sample
exact same direction as the incoming ray, without refraction (i.e. to model a thin translucency), they have to be generated by RixBxdf::

, which means that the presence needs to be 1. Depending on the intention, this transmitted sample may be generated as a GenerateSample() continuati
 sample.on

	Non-Opaque Surfaces

