
Configuration

Overview

Configuration of RenderMan diagnostics primarily affects the presentation and reporting of data. There is no need to configure the gathering of stats; it is
built into the renderer and cannot be disabled. The presentation of stats, however, is configurable through the use of an INI-style configuration file.

Live Stats

Live stats are enabled by default, which means that the system will automatically set up an internal server (the Live Stats Server) for reporting live stats for
any running render. The tool displays the tracked metrics as part of its HUD, and each DCC plugin also has a built-in "Live Stats" presentation panel. it
The Live Stats Server can be toggled on/off through prefs or the configuration file but the set of metrics collected by the system is currently not
configurable.

Configuration File

Default Configuration

The stats configuration file (default name: "stats.ini") holds the basic default settings for a stats session. Below is the default configuration for the stats
system, equivalent to the default behavior of the system if there were no configuration file specified:

Default: stats.ini

stats.ini
Roz Stats default configuration file
#
Copy this file to: /a/path/of/your/choosing/stats.ini
set RMAN_STATS_CONFIG_PATH = /a/path/of/your/choosing

version 0.1

Set this to 1 for extra information when parsing this file
verbose 0

Stats processing log level.
Range is 0 (none) to 5 (debug output). Default is 3 (warnings)
logLevel 3

Session configuration
[Session]

Distinguishing name for this session configuration
name "RMANTREE Session"

Enable the internal live stats server
liveStatsEnabled 1

List of listeners which the session should create and manage.
#[ManagedListeners]

This file can be found in the RenderMan distribution at $RMANTREE/etc/stats.ini

Config File Search Order

Command-line will search for the stats configuration file in the following order:prman

Order Location Default

Stats presentation for live interaction is enabled in RenderMan by default. The ability to attach to a render running on a farm is a feature
planned for the future but not currently supported. The live stats system will spawn a background process which can interfere with sbrokerd
process lifetime and cgroup management of farm processes therefore it is recommended that live stats be explicitly disabled for farm renders
using a bespoke pipeline . configuration file

1 /stats/configpath setting in rendermn.ini .:${RMANTREE}/etc

2 RMAN_STATS_CONFIG_PATH environment variable override none

3 prman -statsconfig </path/to/filename.ini> stats.ini

If you specify an absolute path on the command line it will override any requested search paths. This is a convenient way to do quick testing without having
to modify an existing config file. For example, suppose you normally run with a certain configuration of listeners, but then want to do a render with details
printed to the console about a specific metric or group of metrics. You could do a debugging run that temporarily overrides the default configuration in one
of two ways - either by setting/pre-pending the environment variable override:

setenv RMAN_STATS_CONFIG_PATH /my/test/directory
prman -statsconfig debug_stats.ini complicatedScene.rib

Or by providing a full-path, absolute file name:

prman -statsconfig /my/test/directory/debug_stats.ini complicatedScene.rib

Both of these methods will load the stats configuration from "/my/test/directory/debug_stats.ini"

Disabling Live Stats for Farm Renders

The ability to attach to a render running on a farm is a feature planned for the future but not currently supported. The live stats system will spawn a
background process which can interfere with process lifetime and cgroup management of farm processes therefore it is recommended that live sbrokerd
stats be explicitly disabled for farm renders using a bespoke pipeline configuration file.

In a nutshell, an explicit configuration file is needed that sets the config option to .liveStatsEnabled 0

The following example is the minimum configuration file needed to turn live stats off. Place the config file in a known location and either add the prman -
 command-line option or set the accordingly.statsconfig RMAN_STATS_CONFIG_PATH

Farm, live stats off: stats.ini

stats.ini
Roz Stats farm configuration file
[Session]
name "Farm Stats Session"

Disable the internal live stats server
liveStatsEnabled 0

DCC Configuration

A live stats configuration UI pane is available in all RenderMan bridge products, with the exception of Solaris which does not yet have support for the new
stats system. In addition, advanced configuration with an INI file is also available through the use of the config environment variable. See below for DCC-
specific details.

If a configuration file name is not specified via the command-line option then the default configuration filename prman -statsconfig "stats
 will be used. .ini"

Currently, configuration files are not merged if more than one is found. The last one found wins. Future releases will include advanced
configuration mechanisms, including the merging of configuration files.

It is not recommended to disable this option in the default $RMANTREE/etc/stats.ini file as that will disable live stats for all renders, including
DCC interactive renders. Please pass RenderMan the new configuration file via one of the other methods described above.stats.ini

Blender

RfB uses the command-line mechanism as described above, including the use of the override environment variable.prman RMAN_STATS_CONFIG_PATH

Houdini

If the environment variable is set RfH will use that search path to look for a file named RMAN_STATS_CONFIG_PATH stats.ini.

If no file is found, or if that environment variable is not set then the default configuration will be used.

Katana

If the environment variable is set RfK will use that search path to look for a file named RMAN_STATS_CONFIG_PATH stats.ini.

If no file is found, or if that environment variable is not set then the default configuration will be used.

Additional configuration is also available in RfK through the following attributes:

prmanGlobalStatements.stats.configPath (default:)"."

prmanGlobalStatements.stats.configFile (default:)"stats.ini"

These attributes are currently not exposed in PrmanGlobalStatements, they must be set via AttributeSet or OpScript at the moment. Below is an OpScript
which exposes these two attributes as user args with defaults as listed above. Copy and paste into your Katana scene and modify the path and config file
name as needed.

Configuration OpScript

<katana release="4.0v2" version="4.0.2.000001">
 <node name="__SAVE_exportedNodes" type="Group">
 <node baseType="OpScript" edited="true" name="AdvancedStatsConfiguration" ns_colorb="0.050000" ns_colorg="
0.260000" ns_colorr="0.090000" ns_errorGlow="0.000000" ns_fromContext="legacy" selected="true" type="OpScript"
x="287.350171" y="-212.346316">
 <port name="i0" source="GafferThree.out" type="in"/>
 <port name="out" type="out"/>
 <group_parameter name="AdvancedStatsConfiguration">
 <string_parameter name="CEL" value="((/root))"/>
 <string_parameter name="location" value="/root/world/location"/>
 <group_parameter name="script">
 <string_parameter name="lua" value="
-- Default: 'stats.ini'
local configFile =
Interface.GetOpArg('user.configFile'):getValue()

-- Default: '.:${RMANTREE}
/etc'
-- Can be overriden with RMAN_STATS_CONFIG_PATH
local configPath = Interface.GetOpArg
('user.configPath'):getValue()

Interface.SetAttr(
 'prmanGlobalStatements.
stats.configFile',
 StringAttribute(configFile))

Interface.SetAttr(

'prmanGlobalStatements.stats.configPath',
 StringAttribute(configPath))

"/>
 </group_parameter>
 <string_parameter name="executionMode" value="immediate"/>
 <string_parameter name="applyWhere" value="at locations matching CEL"/>
 <string_parameter name="applyWhen" value="during op resolve"/>
 <string_parameter name="modifierNameMode" value="node name"/>
 <string_parameter name="modifierName" value="modifier"/>
 <string_parameter name="resolveIds" value=""/>
 <number_parameter name="recursiveEnable" value="0"/>
 <string_parameter name="disableAt" value=""/>
 <string_parameter name="inputBehavior" value="by index"/>
 <number_parameter name="multisampleUserOpArgs" value="0"/>
 <group_parameter hints="{}" name="user">
 <string_parameter hints="{'widget': 'fileInput'}" name="configFile" value="stats.
ini"/>
 <string_parameter expression="'.:'+getenv("RMANTREE", ".")+'
/etc'" hints="{}" name="configPath"/>
 </group_parameter>
 </group_parameter>
 </node>
 </node>
</katana>

Maya

If the environment variable is set RfM will use that search path to look for a file named RMAN_STATS_CONFIG_PATH stats.ini.

If no file is found, or if that environment variable is not set then the default configuration will be used.

Solaris

If the environment variable is set RfH will use that search path to look for a file named RMAN_STATS_CONFIG_PATH stats.ini.

If no file is found, or if that environment variable is not set then the default configuration will be used.

Diagnostic Reports

Advanced users may also use the configuration file to build and configure a list of presentation , each with a set of rules for metric data to be Listeners
observed by that listener.

Checkpoint Render Report

For example, below is an example of a configuration file that enables an end-of-render JSON report, including checkpoints:

Checkpoint, JSON report: stats.ini

checkpoint_stats.ini
Stats default configuration file
#
Copy this file to: /a/path/of/your/choosing
then run:
prman -statsconfig /a/path/of/your/choosing/checkpoint_stats.ini

version 0.1

Set this to 1 for extra information when parsing this file
verbose 1

Stats processing log level.
Range is 0 (none) to 5 (debug output). Default is 3 (warnings)
logLevel 5

Session configuration
[Session]
name "Checkpoint Session"

List of listeners which the session should create and manage.
[ManagedListeners]

JSON output report listener
[Listener]
 type "jsonreport"
 name "jsonListener"
 outputFilename "checkpoint_stats.json"
 keepAllCheckpoints 1

[MetricRules]
 # Save all metrics to the JSON file, sampled once per second
 [Rule]
 regexp ".*"
 samplingInterval 1000

See reference page for JSON output configuration options.JSON Report Listener

Houdini/Solaris Known Issue: Live stats will only work properly with either Solaris or Classic Houdini. If a scene is being rendered in one and
then switched to the other the live stats will no longer work reliably. If this happens the scene must be closed and reopened, or the application
must be restarted.

https://rmanwiki.pixar.com/display/REN24/Listeners
https://wiki.pixar.com/display/RND/JSON+Report+Listener

	Configuration

