# **PxrFlakes**



Car Paint with flakes and coating.

Produces a bumped normal that simulates a flake-like perturbation. Connecting this to a the Bump Normal parameter of PxrLMMetal can create metallic fleck paint.

# **Input Parameters**

## Input Normal

Connect your bump pattern here if you wish to add flakes on top of it. Ignored if not connected.

## **Flake Randomness**

This increases the distribution of flake normals, or their deviation from the base normal.

0.0

- 0.1 0.2
- 0.∠ 0.4
- 0.8

# Flake Frequency

Changes the global size of the metal flake features.

10 20

40 80

## Flake Density

Changes the number of metal flakes for a given area. Valid between 0 (no flakes) and 1 (all flakes).

0.125 0.25 0.5 1.0

# Flake Size

Changes the size of metal flakes. Pushing the value above one will create something akin to galvanized metal.

| 0.25 |
|------|
| 0.5  |
| 1.0  |
| 2.0  |

#### Octaves

Number of octaves of noise to calculate flakes. Most of the time, 1 is enough.

1 2 3

#### Jitter

Jitters the flake's position. 0.0 gives a grid-like organisation and 1.0 looks very random.

#### **Validate Normals**

Make sure flakes normals are always in the same hemisphere as the original normal.

### Manifold

The manifold over which to apply the flakes.

The default (when there is no connected manifold) is P in *object* space. This will work fine if your object is not deforming. If your object is deforming :

- Add a \_\_\_Pref primvar to your geometry in its un-deformed state.
- Create a PxrManifold3D node and connect it to the PxrFlakes node.
- In the manifold's Pref field enter: \_\_Pref
- In the manifold's Coordinate System field enter: object

# **Output Parameters**

## resultN

The bumped normal.

## resultA

The flakes' mask. This is a black and white mask that may allow you to tint flakes or change their roughness, for example.