
Alembic Workflows
RenderMan for Maya improves rendering workflows by Alembic
consolidating existing functionalities.

There are now different ways to render Alembic archives in RFM. We
will review them one by one.

Exporting geometry to alembic from Maya
Export for the gpuCache node
Export for imported/referenced archives

Rendering Imported or Referenced Caches
Rendering gpuCache nodes

Creating a new gpuCache node
Shader Assignments

In-scene shading
Assign a base material to part of an archive
Match sub-strings in a hierarchy
Rule execution order

Self-contained Asset Shading
Notes about RLF export

Dynamic Rules CookBook

Exporting geometry to alembic from Maya
First, you need to export your geometry so that RenderMan may render it correctly.

To make it easier, we have added a few export functions in RFM to guarantee correct results, but you can roll out your own based on our work if you
need to customize it.

You can find it in the Archive section of the RenderMan menu...

...or by right-clicking the archive icon in the RenderMan shelf.

This documentation uses an Alembic archive of the Rolling
 model from .Teapot Brice Laville Saint Martin

You can download it .here

http://www.alembic.io
https://rmanwiki.pixar.com/download/attachments/67997644/Rolling_Teapot.abc.zip?version=1&modificationDate=1624904928980&api=v2

As you can see, there are different options depending on how the archive will be rendered:

Export for the gpuCache node

When exporting for the gpuCache node, the alembic archive will be sent directly to the renderer, without being processed by RfM. If your scene
contains polygon meshes that are either smoothed (using the Smooth Mesh controls) or carry RenderMan's subdivision surface attributes, we need to
make sure they will be exported as subdivision surfaces instead of poly meshes. This menu includes a pre-processing step before calling the usual
Alembic export dialog.

Export for imported/referenced archives

When an alembic node is imported or referenced in a Maya scene, the archive's nodes will be rebuilt as Maya shapes and must carry their original
RenderMan attributes to render as expected. Our export menus include a setup step to make sure all relevant attributes will be saved in the alembic
cache, as well as uv sets and subdivision surface creases and corners.

Rendering Imported or Referenced Caches

Alembic archives can either be imported or referenced in Maya. You can attach materials to them and they will render exactly like any other piece of
Maya geometry.

They are great to light and shade animated characters without the burden of evaluating complex rigs. They are not so great when the archive contains
a large number of nodes with heavy geometry, in which case you might consider rendering a GPU cache instead.

Rendering gpuCache nodes

Creating a new gpuCache node

Start by importing your alembic file via the menu. If the menu doesn't appear in your Maya, go to the window to enable GPU Cache Plug-in Manager
it.

We use the node to reference, display and render regular, high quality Alembic archives.gpuCache

It is different from Maya's GPU cache workflow where you save a simplified version of your scene, simply to keep large scenes more
interactive.

Always use our Alembic Export menus for best results. If you try to render alembic files saved via the Cache > GPU Cache > Export...
menu, we can not guarantee the results.

In this example, I imported the Rolling Teapot model. Note that the whole model is now a single node in Maya, which by default will not be rendered
by RenderMan.

To make the GPU cache renderable, we need to add special RenderMan attributes. Select the gpuCache node, go in the Attribute Editor's Attributes
menu and select Add Render Controls.

By default, a gpuCache node is invisible to indirect rays !

Go to the section in the Attribute Editor and enable .Render Stats Visible in Reflections

For animated GPU caches please add: Attributes > RenderMan > Manage Attributes > Evaluation Frequency. Set this to Every Frame or
your render will fail to animate correctly.

The default attributes will appear in the RenderMan section:

Render Alembic Cache
MUST be enabled to render.

RLF File Name
The full path to a RenderMan Look File that will be applied to the Alembic file.

Inspect Alembic section

Read archive contents

This button to parse the contents of the archive and display it the node lists.

Filter
The contents of the node list can be filtered using a glob expression.

Pattern Meaning

* matches everything

? matches any single character

[seq] matches any character in seq

[!seq] matches any character not in seq

Node list
A hierarchical view of the archive's contents.

Large alembic archives may take many seconds to parse. Be patient...

The node list may display large number of deeply nested nodes. To work around this Maya bug, we incorrectly
only expand the first 3 levels by default and suggest using the filter field to explore the archive.

The parsed data is saved on the node so it may be displayed quickly without having to re-parse the file, but you
will have to re-parse the archive if anything has changed in it.

Each node will display its properties as an annotation. This is useful to check if your archive contains the
properties you need.

Shader Assignments

A gpuCache is a single shape in Maya, so it is impossible to assign materials as usual. But we can use RenderMan's to assign Dynamic Rules Editor
materials at render-time, with the following limitations:

IPR material edits don't work when using Dynamic Rules
Any rule change will require an IPR restart to take effect.
These limitations will be lifted in an upcoming release.

In-scene shading

Open the Dynamic Rules Editor (in the RenderMan menu or the calculator icon in the shelf) and let's see how it works.

Dynamic rules are written using . See the Dynamic Rules CookBook below for more infos.XPath

This is our starting point: the gpuCache node renders with the default material:

https://en.wikipedia.org/wiki/XPath

Assign a base material to part of an archive

We have prepared a number of basic materials to assign. Let's start by assigning the material to the whole teapot and write our first rule:hull_srf

In the node list, select the top node of the hierarchy we want to assign to: Rolling_Teapot.
Click to create a new ruleAdd Rule
Double-click the XPath field to put it in edit mode.
Go to the Alembic node list and middle-mouse-drag the selected node into the expression field.

Please note that you must select an item in the list before drag-and-dropping.
Edit the expression:

//Rolling_Teapot_Grp/Rolling_Teapot//*

All expressions must start with to ignore obsolete RfM render passes.//
A double slash is generally equivalent to in a shell./*/

Add at the end to match all shapes at the end of matching paths.//*
Press enter to validate.

Double-click the field and select .Payload hull_srf
Launch the IPR to test.

Match sub-strings in a hierarchy

Now we will shade the rivets on the teapot. We will need a more complicated expression.

Duplicate the first rule
Right-click on the rule number (0 in our case) and select .Duplicate Rules

Extend the previous expression to match any object containing the word "rivet".

//Rolling_Teapot_Grp/Rolling_Teapot//*[contains(name(), 'rivet')]//*

[...] means we will define a sub-expression
contains(path, substring) matches if substring is in path.
name() returns the current node's name.
Finally, we extend the expression with to match shape nodes, as in the previous expression.//*

On that model, there are also screws that could use the same material. The expression can be extended to match them too:

//Rolling_Teapot_Grp/Rolling_Teapot//*[contains(name(), 'rivet') or contains(name(), 'screw')]//*

Rule execution order

Let's assign a material to the teapot's rings.

We use the same workflow: duplicate the rule, replace with and set the Payload to . But it didn't quite work because, as "rivet" "ring" ring_srf
you can see in the node list, some shapes have both and in their name and rivets on the rings are now using the wrong material."rivet" "ring"

Here is what happens:

Rule 0 matches shapes with and then stops, because the mode defaults to ."ring" Flow Stop on Match
If a shape is named , it will get the ring material, although it is a rivet."turret_ring_rivet2"

Rule 1 matches shapes with that were not matched by rule 0."rivet"
"turret_ring_rivet2" will not be matched because the rule evaluation stopped with rule 0.

We can fix this by changing the : if we match rivet first, the matching engine will stop when it finds a match and then only shapes rule execution order
only containing "ring" will match the second rule.

Position the cursor over the rule's number and left-button-drag rule 1 (rivets) above rule 0 (rings).
Render to check.

Of course, we have only scratched the surface and we recommend that you read up on XPath for more sophisticated expressions.

Self-contained Asset Shading

If you want to import fully shaded assets, there are 2 options:

When RfM finds a rlf file in the same location and with the same name as the archive, it will automatically apply it.
This is not always very flexible in a pipeline, but may be useful for archiving assets.

If the field of a gpuCache node contains a path to a rlf file, RfM will apply it to that gpuCache node.RLF File Name
It becomes easy to script look assignment and updating.
We provide a sample RLF export script that can be downloaded .here

Note that you can still override automatic assignments in the scene with the Dynamic Rule Editor !

https://rmanwiki.pixar.com/download/attachments/67997644/rmanExportSceneRLF.mel?version=1&modificationDate=1624904928941&api=v2

Notes about RLF export

When you reference multiple RFL files in a scene, you must make sure that all shading nodes have unique names. If you define the same name
multiple times, the renderer will use the first in line and you will get unexpected results.

In our , we ask the user to provide a Unique Identifier string that will prefix all node names in the RLF file.sample export script

Dynamic Rules CookBook

Imagine we have a gpuCache node named Rolling_Teapot...

Everything in the scope, i.e. the Maya scene:

//*

All nodes in the gpuCache node:

//Rolling_Teapot//*

All nodes of the gpuCache with "rivet" in their name:

//Rolling_Teapot//*[contains(name(),'rivet')]//*

All nodes of the gpuCache with "rivet" or "screw" in their name:

//Rolling_Teapot//*[contains(name(),'rivet') or contains(name(), 'screw')]//*

All nodes of the gpuCache with "rivet" but not "screw" in their name:

https://rmanwiki.pixar.com/download/attachments/67997644/rmanExportSceneRLF.mel?version=1&modificationDate=1624904928941&api=v2

//Rolling_Teapot//*[contains(name(),'rivet') and not(contains(name(), 'screw'))]//*

All shapes of the gpuCache under a transform starting with "ring_":

//Rolling_Teapot//*[starts-with(name(),'ring_')]//*

Match 2 sub-groups in the cache's hierarchy:

//Rolling_Teapot//*//train_L//* | //Rolling_Teapot//*//train_R//*

	Alembic Workflows

