
Aggregate Volumes

Aggregate volume composition of cloudscape vs final render - Luca © Disney/Pixar

Why Aggregate Volumes?

Aggregate volumes are designed for workflows that involve many individual volumes which do not have any boundary behavior. The knowledge that rays
will not reflect or refract at the boundary of a volume allows the renderer to perform significant optimizations over the set of many such volumes.

In the Luca cloud scene shown above, several dozen individual cloud elements have been layered together into a unified cloudscape. The aggregate
volume workflow allow these cloud elements to be rendered efficiently without having to combine them into a single volume, which may be an expensive
process external to the renderer.

In addition, aggregate volumes allow for a named set of volumes that can be used in special circumstances, such as binding a heterogeneous interior to
the interior of dielectric surface.

Workflow

The usual workflow for aggregate volumes is to create a named aggregate volume by attaching the Attribute "volume" "string aggregate" ["n
 to one or more primitives, where is the desired name of the aggregate volume. These volume primitives should use the ame"] RiVolumes "name" PxrVolu

 shader to control their volumetric appearance. Once several volume primitives have been tagged with this attribute with the same name, the named me
aggregate volume can be supplied as the parameter to the integrator. This signifies that the "volumeAggregate" PxrPathTracer global volume

 for the scene is the named aggregate volume. The named volume aggregate will now appear in renders. Control over how the volume is aggregate
integrated and sampled is via parameters on the PxrPathTracer integrator.

If the data source for the volumes are files, the density signals comes directly from the file, and is not increased by shading, then it is highly OpenVDB
suggested that the new be set to . Doing so will allow the renderer to build an acceleration structure Attribute "volume" "int dsominmax" [1]
from the volume much faster using minimum and maximum values of the density, either by reading prebaked data directly from the VDB file or generating
it on the fly as the volume is loaded. This results in much faster time to first pixel as the renderer no longer needs to run density shading in a preprocess
upfront before shooting rays. If the volume density is derived procedurally in a shader, then should be set to 0. An exception exists for cases dsominmax
when a quick density manipulation is desired: supports new controls that allow for global scaling and shaping of the density while still impl_openvdb
supporting the 1 optimization.dsominmax

In addition, if the OpenVDB files are heavily detailed and it is anticipated that the files may be overly dense for what is required, the VDB files can
optionally be preprocessed with to generate mipmaps. Doing so result in lower peak memory requirements as only lower levels of the vdbmake may
mipmap pyramid will need to be loaded by the renderer. On the other hand, it may often be the case that loading two fine levels of the mipmap pyramid
may use more memory than simply loading the base level of the pyramid; the OpenVDB file format in particular can make the advantages of mipmapping
less obvious than would be seen in other potential volumetric file formats.

While typically the PxrPathTracer integrator can only render one global volume aggregate, any number of aggregates can be created. These aggregates
can be bound as the interior to a closed dielectric surface that uses the material. Unlike regular volumes, aggregate volumes are fully PxrSurface
supported as a interior for PxrSurface. This is the best way for creating complex effects such as occlusions inside gemstones, or a swirling heterogeneous
ball of smoke inside a crystal ball... or Luca swimming in the ocean with crepuscular light rays.

https://rmanwiki.pixar.com/display/REN24/Volumes
https://rmanwiki.pixar.com/display/REN24/PxrVolume
https://rmanwiki.pixar.com/display/REN24/PxrVolume
https://rmanwiki.pixar.com/display/REN24/PxrPathTracer
http://www.openvdb.org/
https://rmanwiki.pixar.com/display/REN24/OpenVDB+Implicit+Field+Plugin
https://rmanwiki.pixar.com/display/REN24/vdbmake
https://rmanwiki.pixar.com/display/REN24/PxrSurface

Fog beam layer with aggregate volumes bound to ocean interior, vs final composite - Luca © Disney/Pixar

Capabilities and Advantages

Aggregate volumes are fully supported by the and integrators. As noted above, aggregate volumes are designed to be more PxrPathTracer PxrUnified
efficient than the previous volume workflow in situations with tens or even hundreds of overlapping volumes, and impose no limitations on the number of
overlapping volumes. Their design also means that aggregate volumes are far less prone to issues that can arise when dealing with coincident geometry
(such as coincident volume boundaries, or volumes coincident with surfaces).

Aggregate volumes also offer several advantages that are not available to non-aggregate volumes. In situations where the density of the volume comes
directly from a VDB file and is not increased by shading, aggregate volumes will usually offer greatly reduced time to first judgement for complex renders.
Aggregate volumes also support volumes, which can potentially reduce memory consumption for overly detailed volumes. Aggregate volumes mipmapped
may also have faster convergence in complex light transport scenarios, as the renderer is able to make better global decisions about sampling with access
to information about more volumes in the scene.

It is anticipated that aggregate volumes will be the primary supported volume workflow in future versions of the XPU renderer.

Limitations

The main limitation of aggregate volumes centers on the fact that a single acceleration structure is built over multiple volumes, and the acceleration
structure cannot store many properties of the individual volumes. This is for performance reasons; having to built an acceleration structure that is aware of
all those individual properties would slow iteration over those volumes immensely. Properties of a single volume that would affect ray traversal would not
work with aggregate volumes unless specially handled, and that special handling would require the renderer to perform extra checks with every step in the
volume. As an example of this, grouping the volumes into trace memberships and using ray subsets , but may not be as efficient as in the normal do work
surface rendering case.

The main individual volume properties that do not work include:

visibility: aggregate volumes do not respect the for camera, transmission, and indirect visibility that you might normally standard visibility flags
expect to set on the individual volumes. To get around this limitation, PxrPathTracer allows the specification of that separate volume aggregates
are used when dealing with rays of a particular type: these are the , , and volumeAggregateCamera volumeAggregateTransmission volum

parameters. These controls are not as flexible as the normal visibility flags - you cannot mix the visibility flags on the eAggregateIndirect
individual volumes of the aggregate - you can only operate on either the visibility of all aggregates, or specify which aggregates to use for certain
types of rays.
volume sampling flags: the parameters on PxrVolume that control sampling techniques (e.g. minSamples, maxSamples,

) do not apply when using aggregate volumes. Instead, the controls for volume sampling are set in the main PxrPathTracer equiangularWeight
integrator.

Several limitations are also related to renderer optimizations that can work across many disjoint volumes. Aggregate volumes do not support single
scattering; multiple scattering is the only choice, and the parameter to will be ignored. Aggregate volumes are also not multiScatter PxrVolume
optimized for strictly homogeneous volumes. While the rendering algorithms are optimized for volumes that are close to homogeneous, they still assume
that the aggregate volume as a whole is heterogeneous even if an individual element is homogeneous and cannot perfectly importance sample the
volumes accordingly.

Aggregate volumes only support the use of the geometry primitive.RiVolume

https://rmanwiki.pixar.com/display/REN24/PxrPathTracer
https://rmanwiki.pixar.com/display/REN24/PxrUnified
https://rmanwiki.pixar.com/display/REN24/Visibility

High speed transformation motion blur of individual volumes will not be as efficient in an aggregate volume workflow compared to non-aggregate volumes.

While aggregate volumes can be bound as interiors to PxrSurface, aggregate volumes are not recommended for complex nested dielectric scenarios (e.g.
tinted murky water inside a tinted glass inside a foggy room).

Aggregate volumes are not currently supported in PxrVCM. They are fully supported in both PxrPathTracer and PxrUnified.

Multi-scattering optimizations are fully supported, but the relevant controls on PxrVolume are ignored on aggregate volumes. Instead, in the aggregate
volume workflow, those controls are now on the light sources themselves.

In the initial 24.2 release, matte aggregate volumes may not correctly hold out against non-matte volumes. We anticipate that this will be addressed in an
upcoming dot release.

Mipmapping

Mipmapping is a standard technique used to improve texture aliasing and rendering performance by automatically choosing an appropriate texture
resolution level from a pyramid based on viewing size and angle of the texture on screen. This technique can be applied to volumetric data optionally
comprised of voxels: in much the same way that a 2D mipmap pyramid level contains texels that are averages of four finer texels, a 3D mipmap pyramid
level contains voxels that are each averaged from eight finer voxels. Mipmapping a volume asset will increase its disk space significantly, and may
increase memory during rendering somewhat if the finest voxels are appropriately sized to the level of detail required for the camera; however, if the voxels
are much finer in detail than the camera settings require, mipmapping can save significant RAM and render time because the renderer will only load
coarser averaged voxels instead. Aggregate volumes using the plugin as a data source for the volume primitives can enable mipmapping impl_openvdb
by setting the parameter to a value greater than 0; this parameter is a multiplier on the standard filterwidth computed by the renderer.filterWidth

vdbmake is a new utility shipping with the RenderMan distribution to aid in the creation of these optimized files in OpenVDB format. takes as vdbmake
input an OpenVDB file with a set of grids, and creates OpenVDB files that have auxiliary mipmapped grids and prebaked acceleration information for those
grids.

Multi-scattering approximation

The techniques used to approximate the look of deeply multiscattered volumes rely on altering the density properties of the volume based on the depth of
the camera ray. For volume aggregates, the controls for this have been moved to the lights. For more information, please consult rendering clouds with

.aggregate volumes

https://rmanwiki.pixar.com/display/REN24/OpenVDB+Implicit+Field+Plugin
https://rmanwiki.pixar.com/display/REN24/vdbmake
https://rmanwiki.pixar.com/display/REN24/Rendering+Clouds+with+Aggregate+Volumes
https://rmanwiki.pixar.com/display/REN24/Rendering+Clouds+with+Aggregate+Volumes

	Aggregate Volumes

