
Volumes

The rendering of effects like fog, smoke, clouds, cloudy water, and even glass is complicated because light no longer just interacts with the surface of a
material; it can be both attenuated and scattered inside and within the . is required to handle the complex light participating media Volume rendering
transport.

When dealing with volumetric effects that are (the participating media is unchanging inside the volume, i.e. unclouded glass or water), a homogeneous
dedicated volume shader like or a surface shader that supports some volumetric effects like can be used on closed geometry of PxrVolume PxrSurface
any type - for example a . However, if the effects are (like fog or clouds), then a special type of geometry is typically subdivision mesh heterogeneous
needed in order to provide values that change over a three-dimensional domain. RenderMan provides a volume primitive (RiVolume) which supports this
need.

The volume primitive is simply a rectangular axis-aligned box that can return a value for an arbitrary variable at a three-dimension coordinate inside the
box. This differs from a parametric surface, which can typically only respond to queries on the surface parameterized by two-dimensional coordinates. For
volume rendering of participating media such as smoke, the most typically used variable is the density of the volume. For more complicated situations like
fire, densities like fuel, temperature, or velocity may be part of the variables associated with the volume primitive.

Volume Description

There are two descriptions of the volume primitive typically used with RenderMan.

The simplest is a box subdivided in three dimensions into a regular lattice of voxels, with values provided for arbitrary variables at every corner of
the lattice. A lookup of a variable within the box performs trilinear or tricubic interpolation of the nearest lattice points. This representation, while
simple, may lead to unwieldy RIB files for dense volumes.

This approach is used by RenderMan for Maya to render Maya fluids. In the Maya user interface shown below, the bounds of the box are directly
manipulated in the viewer on the left. In the attribute editor, the resolution describes the number of subdivisions of the box, which ultimately affect
the accuracy of the volume simulation and rendering; in this case, the box is divided into 10x10x10 voxels. The variables associated with the
volume are described in the Contents Method pulldown; here, the variables "Density" and "Velocity" are enabled, while "Temperature" and "Fuel"
are disabled.

https://rmanwiki.pixar.com/display/REN25/PxrVolume
https://rmanwiki.pixar.com/display/REN25/PxrSurface
https://rmanwiki.pixar.com/display/REN25/Subdivision+Surfaces

In situations where the volume is already described via an external resource such as an file on disk, the volume primitive supports OpenVDB
arbitrary C++ which can interface directly with the external resource in order to compute the value of an arbitrary variable volume field plugins
within the extents of the box. RenderMan provides a plugin called impl_openvdb which can use VDB files directly. In this case, the volume
description simply involves the extents of the box, the OpenVDB file, and the grids from the OpenVDB file which correspond to useful primitive
variables.

Below is an illustration of using the OpenVDB Viewer node supplied with RenderMan for Maya. An OpenVDB file has been loaded from disk and
the contents of the density grid visualized in Maya. The Primitive Variables tab describes the mapping from the OpenVDB grids to the variables
that will be made available to RenderMan.

Volume Shading

With the geometry description of a volume being relatively simple, setting the shading parameters of the volume is critical to the overall look. For volume
effects like fog, smoke, and clouds, RenderMan provides a dedicated shader called . After performing a volumetric simulation, a typical PxrVolume
workflow for rendering involves setting up the geometry description as above, deciding which variables in the geometry description need to be mapped
either directly to inputs of PxrVolume, or remapped using intermediate Pattern nodes, and finally tweaking the settings in PxrVolume to control the overall
volumetric look. Note that scattering in the volume is controlled by the Max Path Length parameter in the chosen integrator and not the individual diffuse
and specular trace depths.

The "dice" "minlength" attribute should be set to -1 to provide a hint about what the min length should be based on the voxel data. This may become the
default behavior in the future.

https://rmanwiki.pixar.com/display/REN25/PxrVolume

	Volumes

